infinity NLSE


Fopt Known Xopt Known Difficulty
Yes Yes Easy

The realm of nonlinear systems of equations is not 100% tailored to global optimization algorithms; nevertheless, nothing stops you from applying a global solver to try and optimize a system of nonlinear equations, assuming the formulation is appropriate for the solvers.


methodology Methodology

In order to build this dataset I have drawn from many different sources (Publications, ALIAS/COPRIN and many others) to create 44 systems of nonlinear equations with dimensionality ranging from 2 to 8. A complete set of formulas giving the actual equations is presented in the section NLSE Datasets, and specifically in Table 14.4 .

The approach for building a single-valued objective function out of a system of nonlinear equations:

\begin{cases}
f_1 (x) = ... \\
f_2 (x) = ... \\
... \\
f_n (x) = ...
\end{cases}

Is to treat it kind of like a nonlinear least squares problem, where the actual (scalar-valued) objective function is easily formulated as:

F(x) = \sum_{i=1}^n f_i (x)^2

Then, of course, the global minimum is attained at F(x) = 0.

A few examples of 2D benchmark functions created with the NLSE test suite can be seen in Figure 14.1.

_images/NLSE_1.png

NLSE Function Article92191

_images/NLSE_2.png

NLSE Function CaseStudy7

_images/NLSE_3.png

NLSE Function EffatiGrosan1

_images/NLSE_4.png

NLSE Function Kincox

_images/NLSE_5.png

NLSE Function Merlet

_images/NLSE_6.png

NLSE Function Pinter


test_functions General Solvers Performances

Table 14.1 below shows the overall success of all Global Optimization algorithms, considering every benchmark function, for a maximum allowable budget of NF = 2,000.

The NLSE benchmark suite is an easy test suite: the best solver for NF = 2,000 is MCS, with a success rate of 79.6%, but many solvers are able to correctly optimize more than 60% of objectiv functions:: BiteOpt, AMPGO, SHGO, BasinHopping and SCE.

Note

The reported number of functions evaluations refers to successful optimizations only.


Table 14.1: Solvers performances on the NLSE benchmark suite at NF = 2,000
Optimization Method Overall Success (%) Functions Evaluations
AMPGO 63.64% 321
BasinHopping 63.64% 342
BiteOpt 75.00% 490
CMA-ES 52.27% 622
CRS2 38.64% 801
DE 45.45% 1,234
DIRECT 47.73% 433
DualAnnealing 56.82% 132
LeapFrog 54.55% 412
MCS 79.55% 195
PSWARM 27.27% 1,215
SCE 61.36% 811
SHGO 65.91% 257

These results are also depicted in Figure 14.2, which shows that MCS is the better-performing optimization algorithm, followed by very many other solvers with similar performances.

Optimization algorithms performances on the NLSE test suite at :math:`NF = 2,000`

Figure 14.2: Optimization algorithms performances on the NLSE test suite at NF = 2,000


Pushing the available budget to a very generous NF = 10,000, the results show MCS basically solving all the problems at a 95.5% success rate, with BiteOpt now much closer and AMPGO trailing in third place. The results are also shown visually in Figure 14.3.

Table 14.2: Solvers performances on the NLSE benchmark suite at NF = 10,000
Optimization Method Overall Success (%) Functions Evaluations
AMPGO 75.00% 999
BasinHopping 68.18% 683
BiteOpt 90.91% 1,061
CMA-ES 59.09% 1,146
CRS2 52.27% 1,645
DE 65.91% 2,306
DIRECT 52.27% 974
DualAnnealing 61.36% 373
LeapFrog 65.91% 1,234
MCS 95.45% 910
PSWARM 54.55% 2,423
SCE 68.18% 970
SHGO 65.91% 257
Optimization algorithms performances on the NLSE test suite at :math:`NF = 10,000`

Figure 14.3: Optimization algorithms performances on the NLSE test suite at NF = 10,000


results Sensitivities on Functions Evaluations Budget

It is also interesting to analyze the success of an optimization algorithm based on the fraction (or percentage) of problems solved given a fixed number of allowed function evaluations, let’s say 100, 200, 300,... 2000, 5000, 10000.

In order to do that, we can present the results using two different types of visualizations. The first one is some sort of “small multiples” in which each solver gets an individual subplot showing the improvement in the number of solved problems as a function of the available number of function evaluations - on top of a background set of grey, semi-transparent lines showing all the other solvers performances.

This visual gives an indication of how good/bad is a solver compared to all the others as function of the budget available. Results are shown in Figure 14.4.

Percentage of problems solved given a fixed number of function evaluations on the NLSE test suite

Figure 14.4: Percentage of problems solved given a fixed number of function evaluations on the NLSE test suite


The second type of visualization is sometimes referred as “Slopegraph” and there are many variants on the plot layout and appearance that we can implement. The version shown in Figure 14.5 aggregates all the solvers together, so it is easier to spot when a solver overtakes another or the overall performance of an algorithm while the available budget of function evaluations changes.

Percentage of problems solved given a fixed number of function evaluations on the NLSE test suite

Figure 14.5: Percentage of problems solved given a fixed number of function evaluations on the NLSE test suite


A few obvious conclusions we can draw from these pictures are:

  1. For this specific benchmark test suite, MCS is the best solver no matter the budgets of function evaluations. For very limited budgets, DualAnnealing an SHGO are also good choices.
  2. For medium to large number of functions evaluations, MCS and BiteOpt are by far the best solvers, both achieving more than 90% success rate.

description NLSE Datasets

Table 14.4: NLSE dataset summary
Name Dimension Function
AOLcosh1 3

\begin{cases}
y_1 = x \cosh{\left (y + 1.0 / x \right )} + z - 1.0 \\
y_2 = x \cosh{\left (y + 2.0 / x \right )} + z - 4.0 \\
y_3 = x \cosh{\left (y + 3.0 / x \right )} + z - 9.0 \\
\end{cases}

Article89741 3

\begin{cases}
y_1 = - x + 0.111111111111111 y^{2} + \sin{\left (z \right )} / 3 - 0.0123456790123457 \cos{\left (x \right )} \\
y_2 = - y + 0.333333333333333 \sin{\left (x \right )} + 0.333333333333333 \cos{\left (z \right )} \\
y_3 = 0.333333333333333 y - z + 0.166666666666667 \sin{\left (z \right )} - 0.111111111111111 \cos{\left (x \right )} \\
\end{cases}

Article90897 2

\begin{cases}
y_1 = x_{1} - 1.7929755 \cdot 10^{-5} x_{2}^{2.0} \\
y_2 = x_{2} - \frac{90.0}{- x_{1} + 1.0} \\
\end{cases}

Article92191 2

\begin{cases}
y_1 = -32.0 + 0.3 e^{- 13.0 b} \cos{\left (13.0 a \right )} + 0.7 e^{- 12.0 b} \cos{\left (12.0 a \right )} \\
y_2 = 0.3 e^{- 13.0 b} \sin{\left (13.0 a \right )} + 0.7 e^{- 12.0 b} \sin{\left (12.0 a \right )} \\
\end{cases}

Auto2Fit1 3

\begin{cases}
y_1 = - x y \sin{\left (z \right )} + x / y z + \left(x + y - z\right)^{\cos{\left (x - 1 \right )}} + \left(\left(x - 0.3\right)^{y}\right)^{z} - 1.0 \\
y_2 = - y z \sin{\left (x \right )} + \left(- x + y + z\right)^{\cos{\left (y - 2 \right )}} + \left(\left(y - 0.2\right)^{z}\right)^{x} - 2.0 + y / x z \\
y_3 = - x z \sin{\left (y \right )} + \left(x - y + z\right)^{\cos{\left (z - 3 \right )}} + \left(\left(z - 0.1\right)^{x}\right)^{y} - 3.0 + z / x y \\
\end{cases}

Auto2Fit2 3

\begin{cases}
y_1 = 2.0^{\sin{\left (y \right )}} + x^{2.23} - z - 1.25 \\
y_2 = 2 x + y + 5.5 z - 7 \\
y_3 = x - y + 0.2 z \\
\end{cases}

Bronstein 3

\begin{cases}
y_1 = x^{2} + y^{2} + z^{2} - 36.0 \\
y_2 = x + y - z \\
y_3 = x y + z^{2.0} - 1.0 \\
\end{cases}

Bullard 2

\begin{cases}
y_1 = 10000.0 x_{1} x_{2} - 1.0 \\
y_2 = -1.001 + e^{- x_{2}} + e^{- x_{1}} \\
\end{cases}

Butcher8 8

\begin{cases}
y_1 = - a - b + b_{1} + b_{2} + b_{3} \\
y_2 = a b - b^{2} - 0.5 b + b_{2} c_{2} + b_{3} c_{3} - 0.5 \\
y_3 = - a \left(b^{2} + 0.333333333333333\right) + b^{3} + b^{2} + 1.33333333333333 b + b_{2} c_{2}^{2} + b_{3} c_{3}^{2} \\
y_4 = - a \left(b^{2} + 0.5 b + 0.166666666666667\right) + a_{32} b_{3} c_{2} + b^{3} + b^{2} + 0.666666666666667 b \\
y_5 = a \left(b^{3} + b\right) - b^{4} - 1.5 b^{3} - 2.5 b^{2} - 0.25 b + 83.0 b_{2} c_{2} + b_{3} c_{3}^{3} - 0.25 \\
y_6 = a \left(b^{3} + 0.5 b^{2} + 0.5 b\right) + a_{32} b_{3} c_{2} c_{3} - b^{4} - 1.5 b^{3} - 1.75 b^{2} - 0.375 b - 0.125 \\
y_7 = a \left(b^{3} + b^{2} + 0.666666666666667 b\right) + a_{32} b_{3} c_{2}^{2} - b^{4} - 1.5 b^{3} - 1.16666666666667 b^{2} - 0.0833333333333333 b - 0.0833333333333333 \\
y_8 = - a \left(b^{3} + b^{2} + 0.333333333333333 b\right) + b^{4} + 1.5 b^{3} + 1.08333333333333 b^{2} + 0.291666666666667 b + 0.0416666666666667 \\
\end{cases}

CSTR 2

\begin{cases}
y_1 = x_{1} - \left(- R + 1.0\right) \left(\frac{D}{10.0 \beta_{1} + 10.0} - x_{1}\right) e^{\frac{10.0 x_{1}}{1.0 + 10.0 x_{1} / \gamma_{1}}} \\
y_2 = x_{1} - x_{2} \left(\beta_{2} + 1\right) + \left(- R + 1.0\right) \left(0.1 D - \beta_{1} x_{1} - x_{2} \left(- \beta_{2} + 1.0\right)\right) e^{\frac{10.0 x_{2}}{1.0 + 10.0 x_{2} / \gamma_{1}}} \\
\end{cases}

CaseStudy3 6

\begin{cases}
y_1 = x_{1} + 0.25 x_{2}^{4.0} x_{4} x_{6} + 0.75 \\
y_2 = x_{2} + 1.10090414052591 e^{x_{1} x_{2}} - 1.405 \\
y_3 = x_{3} - 0.5 x_{4} x_{6} + 1.5 \\
y_4 = x_{4} - 0.605 e^{- x_{3}^{2.0} + 1} - 0.395 \\
y_5 = - 0.5 x_{2} x_{6} + x_{5} + 1.5 \\
y_6 = - x_{1} x_{5} + x_{6} \\
\end{cases}

CaseStudy4 3

\begin{cases}
y_1 = - 5.0 x_{1} x_{2} x_{3} + x_{1}^{x_{2}} + x_{2}^{x_{1}} - 85.0 \\
y_2 = x_{1}^{3.0} - x_{2}^{x_{3}} - x_{3}^{x_{2}} - 60.0 \\
y_3 = x_{1}^{x_{3}} - x_{2} + x_{3}^{x_{1}} - 2 \\
\end{cases}

CaseStudy5 3

\begin{cases}
y_1 = - 8.0 x_{1} \sin{\left (x_{2} \right )} + e^{x_{1}^{2.0}} \\
y_2 = x_{1} + x_{2} - 1.0 \\
y_3 = \left(x_{3} - 1.0\right)^{3.0} \\
\end{cases}

CaseStudy6 3

\begin{cases}
y_1 = 3.0 x_{1} - \cos{\left (x_{2} x_{3} \right )} - 0.5 \\
y_2 = x_{1}^{2.0} - 625.0 x_{2}^{2.0} - 0.25 \\
y_3 = 20.0 x_{3} - 1.0 + 3.33333333333333 \pi + e^{- x_{1} x_{2}} \\
\end{cases}

CaseStudy7 2

\begin{cases}
y_1 = - 3.0 x_{1} x_{2}^{2.0} + x_{1}^{3.0} - 1.0 \\
y_2 = 3.0 x_{1}^{2.0} x_{2} - x_{2}^{3.0} + 1.0 \\
\end{cases}

Celestial 3

\begin{cases}
y_1 = 4 p^{3} \phi^{3} - 6 p^{3} - 12 p^{2} \phi^{3} s + 15 p \phi^{3} s^{3} - 3 p \phi^{3} s - 3 \phi^{3} s^{5} + \phi^{3} s^{3} \\
y_2 = - 6 p^{3} s - 9 p \phi^{3} s^{2} + 5 p \phi^{3} + 3 \phi^{3} s^{4} - 5 \phi^{3} s^{2} \\
y_3 = - 12 p s^{2} + 12 p + 4 \phi^{2} + 3 s^{4} - 6 s^{2} + 3 \\
\end{cases}

Chem 5

\begin{cases}
y_1 = - x_{1} \left(x_{2} + 1\right) + 3 x_{5} \\
y_2 = - r x_{5} + x_{1} + x_{2} \left(2 r_{10} x_{2} + r_{7} x_{3} + r_{8} + r_{9} x_{4} + 2 x_{1} + x_{3}^{2}\right) \\
y_3 = x_{3} \left(2 r_{5} x_{3} + r_{6} + r_{7} x_{2} + 2 x_{2} x_{3}\right) - 8 x_{5} \\
y_4 = - 4 r x_{5} + x_{4} \left(r_{9} x_{2} + 2 x_{4}\right) \\
y_5 = r_{5} x_{3}^{2} + r_{6} x_{3} + x_{1} + x_{2} \left(r_{10} x_{2} + r_{7} x_{3} + r_{8} + r_{9} x_{4} + x_{1} + x_{3}^{2}\right) + x_{4}^{2} - 1 \\
\end{cases}

Chemk 4

\begin{cases}
y_1 = x_{1}^{2} - x_{2} \\
y_2 = - x_{3} + x_{4}^{2} \\
y_3 = 0.55 x_{1} x_{4} + 0.45 x_{1} - 16970000.0 x_{2} x_{4} + 21770000.0 x_{2} - x_{4} \\
y_4 = 41260000.0 x_{1} x_{3} - 8282000.0 x_{1} x_{4} + 158500000000000.0 x_{2} x_{4} + 22840000.0 x_{3} x_{4} - 19180000.0 x_{3} + 48.4 x_{4} - 27.73 \\
\end{cases}

Cyclo 3

\begin{cases}
y_1 = - y^{2} z^{2} - y^{2} + 24 y z - z^{2} - 13 \\
y_2 = - x^{2} z^{2} - x^{2} + 24 x z - z^{2} - 13 \\
y_3 = - x^{2} y^{2} - x^{2} + 24 x y - y^{2} - 13 \\
\end{cases}

DiGregorio 3

\begin{cases}
y_1 = \left(40 \sin{\left (p \right )} - 40.0\right)^{2.0} + \left(q - 40.0 \cos{\left (p \right )} + 10.0\right)^{2.0} - 1000.0 \\
y_2 = \left(- 40 \cos{\left (p \right )} + 20.0\right)^{2.0} - \left(- 35.0 \cos{\left (t \right )} + 20.0\right)^{2.0} + 1600.0 \sin^{2.0}{\left (p \right )} - 1225.0 \sin^{2.0}{\left (t \right )} \\
y_3 = \left(- q + 10\right)^{2.0} - \left(- 35 \cos{\left (t \right )} - 10\right)^{2.0} - 1225.0 \sin^{2.0}{\left (t \right )} + 1600.0 \\
\end{cases}

Dipole 8

\begin{cases}
y_1 = a + b - 0.63254 \\
y_2 = c + d + 1.34534 \\
y_3 = a t + b u - c v - d w + 0.8365348 \\
y_4 = a v + b w + c t + d u - 1.7345334 \\
y_5 = a t^{2} - a v^{2} + b u^{2} - b w^{2} - 2 c t v - 2 d u w - 1.352352 \\
y_6 = 2 a t v + 2 b u w + c t^{2} - c v^{2} + d u^{2} - d w^{2} + 0.843453 \\
y_7 = a t^{3} - 3 a t v^{2} + b u^{3} - 3 b u w^{2} - 3 c t^{2} v + c v^{3} - 3 d u^{2} w + d w^{3} + 0.9563453 \\
y_8 = 3 a t^{2} v - a v^{3} + 3 b u^{2} w - b w^{3} + c t^{3} - 3 c t v^{2} + d u^{3} - 3 d u w^{2} - 1.2342523 \\
\end{cases}

Eco9 8

\begin{cases}
y_1 = x_{1} + x_{2} \left(x_{1} + x_{3}\right) + x_{4} \left(x_{3} + x_{5}\right) + x_{6} \left(x_{5} + x_{7}\right) - x_{8} \left(- x_{7} + 0.125\right) \\
y_2 = x_{2} + x_{3} \left(x_{1} + x_{5}\right) + x_{4} \left(x_{2} + x_{6}\right) + x_{5} x_{7} - x_{8} \left(- x_{6} + 0.25\right) \\
y_3 = x_{2} x_{5} + x_{3} \left(x_{6} + 1\right) + x_{4} \left(x_{1} + x_{7}\right) - x_{8} \left(- x_{5} + 0.375\right) \\
y_4 = x_{1} x_{5} + x_{2} x_{6} + x_{3} x_{7} + x_{4} - x_{8} \left(- x_{4} + 0.5\right) \\
y_5 = x_{1} x_{6} + x_{2} x_{7} + x_{5} - x_{8} \left(- x_{3} + 0.625\right) \\
y_6 = x_{1} x_{7} + x_{6} - x_{8} \left(- x_{2} + 75.0\right) \\
y_7 = x_{7} - x_{8} \left(- x_{1} + 0.875\right) \\
y_8 = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6} + x_{7} + x_{8} + 1.0 \\
\end{cases}

EffatiGrosan1 2

\begin{cases}
y_1 = \cos{\left (2 x_{1} \right )} - \cos{\left (2 x_{2} \right )} - 0.4 \\
y_2 = - 2 x_{1} + 2 x_{2} - \sin{\left (2 x_{1} \right )} + \sin{\left (2 x_{2} \right )} - 1.2 \\
\end{cases}

EffatiGrosan2 2

\begin{cases}
y_1 = x_{1} x_{2} + e^{x_{1}} - 1.0 \\
y_2 = x_{1} + x_{2} + \sin{\left (x_{1} x_{2} \right )} - 1.0 \\
\end{cases}

F3 2

\begin{cases}
y_1 = 3.0 x_{1} x_{2} + 2.0 x_{1} - 1.0 \\
y_2 = x_{1} - x_{2} + x_{2} e^{- x_{1}} - e^{-1} \\
\end{cases}

Ferrais 2

\begin{cases}
y_1 = 0.5 x_{1} + 0.25 x_{2} / \pi - 0.5 \sin{\left (x_{1} x_{2} \right )} \\
y_2 = - 5.43656365691809 x_{1} + 2.71828182845905 x_{2} / \pi + \left(- 0.25 / \pi + 1.0\right) \left(e^{2.0 x_{1}} - 2.71828182845905\right) \\
\end{cases}

Gaussian 3

\begin{cases}
y_1 = 0.0009 \\
y_2 = 0.0044 \\
y_3 = 0.0175 \\
y_1 = x_{1} e^{- 0.5 x_{2} \left(t_{1} - x_{3}\right)^{2.0}} - y_{11} \\
y_2 = x_{2} e^{- 0.5 x_{2} \left(t_{2} - x_{3}\right)^{2.0}} - y_{22} \\
y_3 = x_{3} e^{- 0.5 x_{2} \left(t_{3} - x_{3}\right)^{2.0}} - y_{33} \\
\end{cases}

GenEig 6

\begin{cases}
y_1 = - 10 x_{1} x_{6}^{2} + x_{1} x_{6} + 10 x_{1} + 2 x_{2} x_{6}^{2} + 2 x_{2} x_{6} + 2 x_{2} - x_{3} x_{6}^{2} + x_{3} x_{6} - x_{3} + x_{4} x_{6}^{2} + 2 x_{4} x_{6} + 2 x_{4} + 3 x_{5} x_{6}^{2} + x_{5} x_{6} - 2 x_{5} \\
y_2 = 2 x_{1} x_{6}^{2} + 2 x_{1} x_{6} + 2 x_{1} - 11 x_{2} x_{6}^{2} + x_{2} x_{6} + 9 x_{2} + 2 x_{3} x_{6}^{2} + 2 x_{3} x_{6} + 3 x_{3} - 2 x_{4} x_{6}^{2} + x_{4} x_{6} - x_{4} + x_{5} x_{6}^{2} + 3 x_{5} x_{6} - 2 x_{5} \\
y_3 = - x_{1} x_{6}^{2} + x_{1} x_{6} - x_{1} + 2 x_{2} x_{6}^{2} + 2 x_{2} x_{6} + 3 x_{2} - 12 x_{3} x_{6}^{2} + 10 x_{3} - x_{4} x_{6}^{2} - 2 x_{4} x_{6} + 2 x_{4} + x_{5} x_{6}^{2} - 2 x_{5} x_{6} - x_{5} \\
y_4 = x_{1} x_{6}^{2} + 2 x_{1} x_{6} + 2 x_{1} - 2 x_{2} x_{6}^{2} + x_{2} x_{6} - x_{2} - x_{3} x_{6}^{2} - 2 x_{3} x_{6} + 2 x_{3} - 10 x_{4} x_{6}^{2} + 2 x_{4} x_{6} + 12 x_{4} + 2 x_{5} x_{6}^{2} + 3 x_{5} x_{6} + x_{5} \\
y_5 = 3 x_{1} x_{6}^{2} + x_{1} x_{6} - 2 x_{1} + x_{2} x_{6}^{2} + 3 x_{2} x_{6} - 2 x_{2} + x_{3} x_{6}^{2} - 2 x_{3} x_{6} - x_{3} + 2 x_{4} x_{6}^{2} + 3 x_{4} x_{6} + x_{4} - 11 x_{5} x_{6}^{2} + 3 x_{5} x_{6} + 10 x_{5} \\
y_6 = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} - 1 \\
\end{cases}

Helical 2

\begin{cases}
y_1 = - 100.0 \arctan{\left (x_{2} / x_{1} \right )} / \pi + 0.5 \\
y_2 = 10.0 \sqrt{x_{1}^{2.0} + x_{2}^{2.0}} - 10.0 \\
\end{cases}

Helical1 3

\begin{cases}
y_1 = 10 x_{3} + 100.0 \arctan{\left (x_{2} / x_{1} \right )} / \pi - 50.0 \\
y_2 = 10.0 \sqrt{x_{1}^{2.0} + x_{2}^{2.0}} - 10.0 \\
y_3 = x_{1} - \sin{\left (x_{3} \right )} \\
\end{cases}

Kearl11 8

\begin{cases}
y_1 = x_{1}^{2} + x_{2}^{2} - 1 \\
y_2 = x_{3}^{2} + x_{4}^{2} - 1 \\
y_3 = x_{5}^{2} + x_{6}^{2} - 1 \\
y_4 = x_{7}^{2} + x_{8}^{2} - 1 \\
y_5 = 0.004731 x_{1} x_{3} - 0.1238 x_{1} - 0.3578 x_{2} x_{3} - 0.001637 x_{2} - 0.9338 x_{4} + x_{7} - 0.3571 \\
y_6 = 0.2238 x_{1} x_{3} + 0.2638 x_{1} + 0.7623 x_{2} x_{3} - 0.07745 x_{2} - 0.6734 x_{4} - 0.6022 \\
y_7 = 0.3578 x_{1} + 0.004731 x_{2} + x_{6} x_{8} \\
y_8 = - 0.7623 x_{1} + 0.2238 x_{2} + 0.3461 \\
\end{cases}

Kin1 6

\begin{cases}
y_1 = \sin{\left (t_{2} \right )} \sin{\left (t_{6} \right )} \cos{\left (t_{5} \right )} - \sin{\left (t_{3} \right )} \sin{\left (t_{6} \right )} \cos{\left (t_{5} \right )} - \sin{\left (t_{4} \right )} \sin{\left (t_{6} \right )} \cos{\left (t_{5} \right )} + \cos{\left (t_{2} \right )} \cos{\left (t_{6} \right )} + \cos{\left (t_{3} \right )} \cos{\left (t_{6} \right )} + \cos{\left (t_{4} \right )} \cos{\left (t_{6} \right )} - 0.4077 \\
y_2 = \sin{\left (t_{1} \right )} \cos{\left (t_{5} \right )} + \sin{\left (t_{5} \right )} \cos{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + \sin{\left (t_{5} \right )} \cos{\left (t_{1} \right )} \cos{\left (t_{3} \right )} + \sin{\left (t_{5} \right )} \cos{\left (t_{1} \right )} \cos{\left (t_{4} \right )} - 1.9115 \\
y_3 = \sin{\left (t_{2} \right )} \sin{\left (t_{5} \right )} + \sin{\left (t_{3} \right )} \sin{\left (t_{5} \right )} + \sin{\left (t_{4} \right )} \sin{\left (t_{5} \right )} - 1.9791 \\
y_4 = 3 \cos{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + 2 \cos{\left (t_{1} \right )} \cos{\left (t_{3} \right )} + \cos{\left (t_{1} \right )} \cos{\left (t_{4} \right )} - 4.0616 \\
y_5 = 3 \sin{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + 2 \sin{\left (t_{1} \right )} \cos{\left (t_{3} \right )} + \sin{\left (t_{1} \right )} \cos{\left (t_{4} \right )} - 1.7172 \\
y_6 = 3 \sin{\left (t_{2} \right )} + 2 \sin{\left (t_{3} \right )} + \sin{\left (t_{4} \right )} - 3.9701 \\
\end{cases}

Kincox 2

\begin{cases}
y_1 = - 6.0 \sin{\left (t_{1} \right )} \sin{\left (t_{2} \right )} + 6.0 \cos{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + 10.0 \cos{\left (t_{1} \right )} - 1.0 \\
y_2 = 6.0 \sin{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + 10.0 \sin{\left (t_{1} \right )} + 6.0 \sin{\left (t_{2} \right )} \cos{\left (t_{1} \right )} - 4.0 \\
\end{cases}

Merlet 2

\begin{cases}
y_1 = - \sin{\left (x_{1} \right )} \cos{\left (x_{2} \right )} - 2.0 \sin{\left (x_{2} \right )} \cos{\left (x_{1} \right )} \\
y_2 = - 2.0 \sin{\left (x_{1} \right )} \cos{\left (x_{2} \right )} - \sin{\left (x_{2} \right )} \cos{\left (x_{1} \right )} \\
\end{cases}

Neuro 6

\begin{cases}
y_1 = x_{1}^{2.0} + x_{3}^{2.0} - 1.0 \\
y_2 = x_{2}^{2.0} + x_{4}^{2.0} - 1.0 \\
y_3 = x_{3}^{3.0} x_{5} + x_{4}^{3.0} x_{6} \\
y_4 = x_{1}^{3.0} x_{5} + x_{2}^{3.0} x_{6} \\
y_5 = x_{1} x_{3}^{2.0} x_{5} + x_{2} x_{4}^{2.0} x_{6} \\
y_6 = x_{1}^{2.0} x_{3} x_{5} + x_{2}^{2.0} x_{4} x_{6} \\
\end{cases}

Pinter 2

\begin{cases}
y_1 = x_{1} - \sin{\left (2.0 x_{1} + 3.0 x_{2} \right )} - \cos{\left (3.0 x_{1} - 5.0 x_{2} \right )} \\
y_2 = x_{2} - \sin{\left (x_{1} - 2.0 x_{2} \right )} + \cos{\left (x_{1} + 3.0 x_{2} \right )} \\
\end{cases}

Puma 4

\begin{cases}
y_1 = - 0.3578 \sin{\left (t_{1} \right )} \cos{\left (t_{2} \right )} - 0.001637 \sin{\left (t_{1} \right )} - 0.9338 \sin{\left (t_{2} \right )} + 0.004731 \cos{\left (t_{1} \right )} \cos{\left (t_{2} \right )} - 0.1238 \cos{\left (t_{1} \right )} + \cos{\left (t_{4} \right )} - 0.3571 \\
y_2 = 0.7623 \sin{\left (t_{1} \right )} \cos{\left (t_{2} \right )} - 0.07745 \sin{\left (t_{1} \right )} - 0.6734 \sin{\left (t_{2} \right )} + 0.2238 \cos{\left (t_{1} \right )} \cos{\left (t_{2} \right )} + 0.2638 \cos{\left (t_{1} \right )} - 0.6022 \\
y_3 = 0.004731 \sin{\left (t_{1} \right )} + \sin{\left (t_{3} \right )} \sin{\left (t_{4} \right )} + 0.3578 \cos{\left (t_{1} \right )} \\
y_4 = 0.2238 \sin{\left (t_{1} \right )} - 0.7623 \cos{\left (t_{1} \right )} + 0.3461 \\
\end{cases}

Semiconductor 6

\begin{cases}
y_1 = x_{2} \\
y_2 = x_{3} \\
y_3 = - V + x_{5} \\
y_4 = - V + x_{6} \\
y_5 = - DDD / ni + e^{a \left(- x_{1} + x_{3}\right)} - e^{a \left(x_{1} - x_{2}\right)} \\
y_6 = DDD / ni + e^{a \left(- x_{4} + x_{6}\right)} - e^{a \left(x_{4} - x_{5}\right)} \\
\end{cases}

SixBody 6

\begin{cases}
y_1 = B + D - 6 F + \left(B - D\right) \left(3 b - 3 d\right) + 4 \\
y_2 = 5 B - 5 D + \left(3 b - 3 d\right) \left(B + D - 2 F\right) \\
y_3 = - 6 b - 6 d + 4 f + 3 \left(b - d\right)^{2} + 3 \\
y_4 = B^{2} b^{3} - 1 \\
y_5 = D^{2} d^{3} - 1 \\
y_6 = F^{2} f^{3} - 1 \\
\end{cases}

SjirkBoon 4

\begin{cases}
y_1 = C_{1} \cos{\left (3.0 \phi_{1} \right )} + C_{2} \cos{\left (3.0 \phi_{2} \right )} + 5.0 \\
y_2 = C_{1} \cos{\left (\phi_{1} \right )} + C_{2} \cos{\left (\phi_{2} \right )} - 3.0 \\
y_3 = C_{1} \sin{\left (3.0 \phi_{1} \right )} + C_{2} \sin{\left (3.0 \phi_{2} \right )} \\
y_4 = C_{1} \sin{\left (\phi_{1} \right )} + C_{2} \sin{\left (\phi_{2} \right )} - 4.0 \\
\end{cases}

ThinWall 3

\begin{cases}
y_1 = b h + \left(b - 2.0 t\right) \left(h - 2.0 t\right) - 165.0 \\
y_2 = 0.0833333333333333 b h^{3.0} - 0.0833333333333333 \left(b - 2.0 t\right) \left(h - 2.0 t\right)^{3.0} - 9369.0 \\
y_3 = \frac{2.0 t \left(b - t\right)^{2.0} \left(h - t\right)^{2.0}}{b + h - 2.0 t} - 6835.0 \\
\end{cases}

Xu 2

\begin{cases}
y_1 = - x_{1} + 2.0 \sin{\left (x_{1} \right )} + 7 \sin{\left (x_{2} \right )} + 0.8 \cos{\left (2 x_{1} \right )} \\
y_2 = - x_{2} + 4.0 \sin{\left (2 x_{1} \right )} + 1.4 \sin{\left (3 x_{2} \right )} + 3.1 \cos{\left (2 x_{2} \right )} \\
\end{cases}

Table Of Contents

Previous topic

CVMG

Next topic

Schoen

This Page