test_functions N-D Test Functions V

class VenterSobiezcczanskiSobieski(dimensions=2)

Venter Sobiezcczanski-Sobieski objective function.

This class defines the Venter Sobiezcczanski-Sobieski global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{VenterSobiezcczanskiSobieski}}(x) = x_1^2 - 100 \cos^2(x_1)
                                              - 100 \cos(x_1^2/30)
                                              + x_2^2 - 100 \cos^2(x_2)
                                              - 100 \cos(x_2^2/30)

with x_i \in [-50, 50] for i = 1, 2.

VenterSobiezcczanskiSobieski function

Two-dimensional VenterSobiezcczanskiSobieski function


Global optimum: f(x) = -400 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil #160 hasn’t written the equation very well. Normally a cos squared term is written as cos^2(x) rather than cos(x)^2


class Vincent(dimensions=2)

Vincent objective function.

This class defines the Vincent global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Vincent}}(x) = - \sum_{i=1}^{n} \sin(10 \log(x))

Here, n represents the number of dimensions and x_i \in [0.25, 10] for i = 1, ..., n.

Vincent function

Two-dimensional Vincent function


Global optimum: f(x) = -n for x_i = 7.70628098 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO

Previous topic

N-D Test Functions U

Next topic

N-D Test Functions W

This Page