test_functions N-D Test Functions T

class TestTubeHolder(dimensions=2)

TestTubeHolder objective function.

This class defines the TestTubeHolder global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{TestTubeHolder}}(x) = - 4 \left | {e^{\left|{\cos 
\left(\frac{1}{200} x_{1}^{2} + \frac{1}{200} x_{2}^{2}\right)}
\right|}\sin\left(x_{1}\right) \cos\left(x_{2}\right)}\right|

with x_i \in [-10, 10] for i = 1, 2.

TestTubeHolder function

Two-dimensional TestTubeHolder function


Global optimum: f(x) = -10.872299901558 for x= [-\pi/2, 0]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005


class ThreeHumpCamel(dimensions=2)

Three Hump Camel objective function.

This class defines the Three Hump Camel global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{ThreeHumpCamel}}(x) = 2x_1^2 - 1.05x_1^4 + \frac{x_1^6}{6}
                               + x_1x_2 + x_2^2

with x_i \in [-5, 5] for i = 1, 2.

ThreeHumpCamel function

Two-dimensional ThreeHumpCamel function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Thurber(dimensions=7)

Thurber objective function.

http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml


class Treccani(dimensions=2)

Treccani objective function.

This class defines the Treccani global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Treccani}}(x) = x_1^4 + 4x_1^3 + 4x_1^2 + x_2^2

with x_i \in
[-5, 5] for i = 1, 2.

Treccani function

Two-dimensional Treccani function


Global optimum: f(x) = 0 for x = [-2, 0] or x = [0, 0].

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Trefethen(dimensions=2)

Trefethen objective function.

This class defines the Trefethen global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Trefethen}}(x) = 0.25 x_{1}^{2} + 0.25 x_{2}^{2}
                          + e^{\sin\left(50 x_{1}\right)}
                          - \sin\left(10 x_{1} + 10 x_{2}\right)
                          + \sin\left(60 e^{x_{2}}\right)
                          + \sin\left[70 \sin\left(x_{1}\right)\right]
                          + \sin\left[\sin\left(80 x_{2}\right)\right]

with x_i \in [-10, 10] for i = 1, 2.

Trefethen function

Two-dimensional Trefethen function


Global optimum: f(x) = -3.3068686474 for x = [-0.02440307923, 0.2106124261]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Trid(dimensions=6)

Trid objective function.

This class defines the Trid global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Trid}}(x) = \sum_{i=1}^{n} (x_i - 1)^2
                    - \sum_{i=2}^{n} x_i x_{i-1}

Here, n represents the number of dimensions and x_i \in [-20, 20] for i = 1, ..., 6.

Trid function

Two-dimensional Trid function


Global optimum: f(x) = -50 for x = [6, 10, 12, 12, 10, 6]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil#150, starting index of second summation term should be 2.


class TridiagonalMatrix(dimensions=2)

TridiagonalMatrix objective function.

TridiagonalMatrix function

Two-dimensional TridiagonalMatrix function



class Trigonometric01(dimensions=2)

Trigonometric 1 objective function.

This class defines the Trigonometric 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Trigonometric01}}(x) = \sum_{i=1}^{n} \left [n -
                                \sum_{j=1}^{n} \cos(x_j)
                                + i \left(1 - cos(x_i)
                                - sin(x_i) \right ) \right]^2

Here, n represents the number of dimensions and x_i \in [0, \pi] for i = 1, ..., n.

Trigonometric01 function

Two-dimensional Trigonometric01 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

equaiton uncertain here. Is it just supposed to be the cos term in the inner sum, or the whole of the second line in Jamil #153.


class Trigonometric02(dimensions=2)

Trigonometric 2 objective function.

This class defines the Trigonometric 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Trigonometric2}}(x) = 1 + \sum_{i=1}^{n} 8 \sin^2
                               \left[7(x_i - 0.9)^2 \right]
                               + 6 \sin^2 \left[14(x_i - 0.9)^2 \right]
                               + (x_i - 0.9)^2

Here, n represents the number of dimensions and x_i \in [-500, 500] for i = 1, ..., n.

Trigonometric02 function

Two-dimensional Trigonometric02 function


Global optimum: f(x) = 1 for x_i = 0.9 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Tripod(dimensions=2)

Tripod objective function.

This class defines the Tripod global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Tripod}}(x) = p(x_2) \left[1 + p(x_1) \right] +
                       \lvert x_1 + 50p(x_2) \left[1 - 2p(x_1) \right]
                       \rvert + \lvert x_2 + 50\left[1 - 2p(x_2)\right]
                       \rvert

with x_i \in [-100, 100] for i = 1, 2.

Tripod function

Two-dimensional Tripod function


Global optimum: f(x) = 0 for x = [0, -50]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Tsoulos(dimensions=2)

Tsoulos objective function.

Tsoulos function

Two-dimensional Tsoulos function


Previous topic

N-D Test Functions S

Next topic

N-D Test Functions U

This Page