test_functions N-D Test Functions S

class Salomon(dimensions=2)

Salomon objective function.

This class defines the Salomon global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Salomon}}(x) = 1 - \cos \left (2 \pi
\sqrt{\sum_{i=1}^{n} x_i^2} \right) + 0.1 \sqrt{\sum_{i=1}^n x_i^2}

Here, n represents the number of dimensions and x_i \in
[-100, 100] for i = 1, ..., n.

Salomon function

Two-dimensional Salomon function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Sargan(dimensions=2)

Sargan objective function.

This class defines the Sargan global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Sargan}}(x) = \sum_{i=1}^{n} n \left (x_i^2
+ 0.4 \sum_{i \neq j}^{n} x_ix_j \right)

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Sargan function

Two-dimensional Sargan function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class SawtoothXY(dimensions=2)

SawtoothXY objective function.

SawtoothXY function

Two-dimensional SawtoothXY function



class Schaffer01(dimensions=2)

Schaffer 1 objective function.

This class defines the Schaffer 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schaffer01}}(x) = 0.5 + \frac{\sin^2 (x_1^2 + x_2^2)^2 - 0.5}
{1 + 0.001(x_1^2 + x_2^2)^2}

with x_i \in [-100, 100] for i = 1, 2.

Schaffer01 function

Two-dimensional Schaffer01 function


Global optimum: f(x) = 0 for x = [0, 0] for i = 1, 2

Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718


class Schaffer02(dimensions=2)

Schaffer 2 objective function.

This class defines the Schaffer 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schaffer02}}(x) = 0.5 + \frac{\sin^2 (x_1^2 - x_2^2)^2 - 0.5}
{1 + 0.001(x_1^2 + x_2^2)^2}

with x_i \in [-100, 100] for i = 1, 2.

Schaffer02 function

Two-dimensional Schaffer02 function


Global optimum: f(x) = 0 for x = [0, 0] for i = 1, 2

Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718


class Schaffer03(dimensions=2)

Schaffer 3 objective function.

This class defines the Schaffer 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schaffer03}}(x) = 0.5 + \frac{\sin^2 \left( \cos \lvert x_1^2
- x_2^2 \rvert \right ) - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2}

with x_i \in [-100, 100] for i = 1, 2.

Schaffer03 function

Two-dimensional Schaffer03 function


Global optimum: f(x) = 0.00156685 for x = [0, 1.253115]

Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718


class Schaffer04(dimensions=2)

Schaffer 4 objective function.

This class defines the Schaffer 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schaffer04}}(x) = 0.5 + \frac{\cos^2 \left( \sin(x_1^2 - x_2^2)
\right ) - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2}^2

with x_i \in [-100, 100] for i = 1, 2.

Schaffer04 function

Two-dimensional Schaffer04 function


Global optimum: f(x) = 0.292579 for x = [0, 1.253115]

Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718


class SchmidtVetters(dimensions=3)

Schmidt-Vetters objective function.

This class defines the Schmidt-Vetters global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{SchmidtVetters}}(x) = \frac{1}{1 + (x_1 - x_2)^2}
+ \sin \left(\frac{\pi x_2 + x_3}{2} \right)
+ e^{\left(\frac{x_1+x_2}{x_2} - 2\right)^2}

with x_i \in [0, 10] for i = 1, 2, 3.

Global optimum: f(x) = 2.99643266 for x = [0.79876108,  0.79962581,  0.79848824]

Todo

equation seems right, but [7.07083412 , 10., 3.14159293] produces a lower minimum, 0.193973


class Schwefel01(dimensions=2)

Schwefel 1 objective function.

This class defines the Schwefel 1 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Schwefel01}}(x) = \left(\sum_{i=1}^n x_i^2 \right)^{\alpha}

Where, in this exercise, \alpha = \sqrt{\pi}.

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Schwefel01 function

Two-dimensional Schwefel01 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel02(dimensions=2)

Schwefel 2 objective function.

This class defines the Schwefel 2 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Schwefel02}}(x) = \sum_{i=1}^n \left(\sum_{j=1}^i 
x_i \right)^2

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Schwefel02 function

Two-dimensional Schwefel02 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel04(dimensions=2)

Schwefel 4 objective function.

This class defines the Schwefel 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schwefel04}}(x) = \sum_{i=1}^n \left[(x_i - 1)^2
+ (x_1 - x_i^2)^2 \right]

Here, n represents the number of dimensions and x_i \in [0, 10] for i = 1, ..., n.

Schwefel04 function

Two-dimensional Schwefel04 function


Global optimum: f(x) = 0 for:math:x_i = 1 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel06(dimensions=2)

Schwefel 6 objective function.

This class defines the Schwefel 6 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Schwefel06}}(x) = \max(\lvert x_1 + 2x_2 - 7 \rvert,
                            \lvert 2x_1 + x_2 - 5 \rvert)

with x_i \in [-100, 100] for i = 1, 2.

Schwefel06 function

Two-dimensional Schwefel06 function


Global optimum: f(x) = 0 for x = [1, 3]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel20(dimensions=2)

Schwefel 20 objective function.

This class defines the Schwefel 20 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Schwefel20}}(x) = \sum_{i=1}^n \lvert x_i \rvert

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Schwefel20 function

Two-dimensional Schwefel20 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil #122 is incorrect. There shouldn’t be a leading minus sign.


class Schwefel21(dimensions=2)

Schwefel 21 objective function.

This class defines the Schwefel 21 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Schwefel21}}(x) = \smash{\displaystyle\max_{1 \leq i \leq n}}
                           \lvert x_i \rvert

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Schwefel21 function

Two-dimensional Schwefel21 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel22(dimensions=2)

Schwefel 22 objective function.

This class defines the Schwefel 22 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schwefel22}}(x) = \sum_{i=1}^n \lvert x_i \rvert
                          + \prod_{i=1}^n \lvert x_i \rvert

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Schwefel22 function

Two-dimensional Schwefel22 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Schwefel26(dimensions=2)

Schwefel 26 objective function.

This class defines the Schwefel 26 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schwefel26}}(x) = 418.9829n - \sum_{i=1}^n x_i
                          \sin(\sqrt{|x_i|})

Here, n represents the number of dimensions and x_i \in [-500, 500] for i = 1, ..., n.

Schwefel26 function

Two-dimensional Schwefel26 function


Global optimum: f(x) = 0 for x_i = 420.968746 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Schwefel36(dimensions=2)

Schwefel 36 objective function.

This class defines the Schwefel 36 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Schwefel36}}(x) = -x_1x_2(72 - 2x_1 - 2x_2)

with x_i \in [0, 500] for i = 1, 2.

Schwefel36 function

Two-dimensional Schwefel36 function


Global optimum: f(x) = -3456 for x = [12, 12]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Shekel05(dimensions=4)

Shekel 5 objective function.

This class defines the Shekel 5 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shekel05}}(x) = \sum_{i=1}^{m} \frac{1}{c_{i}
+ \sum_{j=1}^{n} (x_{j} - a_{ij})^2 }`

Where, in this exercise:

a = 
\begin{bmatrix}
4.0 & 4.0 & 4.0 & 4.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \\
8.0 & 8.0 & 8.0 & 8.0 \\ 6.0 & 6.0 & 6.0 & 6.0 \\
3.0 & 7.0 & 3.0 & 7.0 
\end{bmatrix}

c = \begin{bmatrix} 0.1 \ 0.2 \ 0.2 \ 0.4 \ 0.4 \end{bmatrix}

Here, n represents the number of dimensions and x_i \in [0, 10] for i = 1, ..., 4.

Global optimum: f(x) = -10.15319585 for x_i = 4 for i = 1, ..., 4

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

this is a different global minimum compared to Jamil#130. The minimum is found by doing lots of optimisations. The solution is supposed to be at [4] * N, is there any numerical overflow?


class Shekel07(dimensions=4)

Shekel 7 objective function.

This class defines the Shekel 7 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shekel07}}(x) = \sum_{i=1}^{m} \frac{1}{c_{i}
                         + \sum_{j=1}^{n} (x_{j} - a_{ij})^2 }`

Where, in this exercise:

a =
\begin{bmatrix}
4.0 & 4.0 & 4.0 & 4.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \\
8.0 & 8.0 & 8.0 & 8.0 \\ 6.0 & 6.0 & 6.0 & 6.0 \\
3.0 & 7.0 & 3.0 & 7.0 \\ 2.0 & 9.0 & 2.0 & 9.0 \\
5.0 & 5.0 & 3.0 & 3.0
\end{bmatrix}

c =
\begin{bmatrix}
0.1 \ 0.2 \ 0.2 \ 0.4 \ 0.4 \ 0.6 \ 0.3 
\end{bmatrix}

with x_i \in [0, 10] for i = 1, ..., 4.

Global optimum: f(x) = -10.4028188 for x_i = 4 for i = 1, ..., 4

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

this is a different global minimum compared to Jamil#131. This minimum is obtained after running lots of minimisations! Is there any numerical overflow that causes the minimum solution to not be [4] * N?


class Shekel10(dimensions=4)

Shekel 10 objective function.

This class defines the Shekel 10 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shekel10}}(x) = \sum_{i=1}^{m} \frac{1}{c_{i} 
                         + \sum_{j=1}^{n} (x_{j} - a_{ij})^2 }`

Where, in this exercise:

a =
\begin{bmatrix}
4.0 & 4.0 & 4.0 & 4.0 \\ 1.0 & 1.0 & 1.0 & 1.0 \\
8.0 & 8.0 & 8.0 & 8.0 \\ 6.0 & 6.0 & 6.0 & 6.0 \\
3.0 & 7.0 & 3.0 & 7.0 \\ 2.0 & 9.0 & 2.0 & 9.0 \\
5.0 & 5.0 & 3.0 & 3.0 \\ 8.0 & 1.0 & 8.0 & 1.0 \\
6.0 & 2.0 & 6.0 & 2.0 \\ 7.0 & 3.6 & 7.0 & 3.6
\end{bmatrix}

c =
\begin{bmatrix}
0.1 \ 0.2 \ 0.2 \ 0.4 \ 0.4 \ 0.6 \ 0.3 \ 0.7 \ 0.5 \ 0.5
\end{bmatrix}

with x_i \in [0, 10] for i = 1, ..., 4.

Global optimum: f(x) = -10.5362837 for x_i = 4 for i = 1, ..., 4

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Found a lower global minimum than Jamil#132... Is this numerical overflow?


class Shubert01(dimensions=2)

Shubert 1 objective function.

This class defines the Shubert 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shubert01}}(x) = \prod_{i=1}^{n}\left(\sum_{j=1}^{5}
                          cos(j+1)x_i+j \right )

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Shubert01 function

Two-dimensional Shubert01 function


Global optimum: f(x) = -186.7309 for x = [-7.0835, 4.8580] (and many others).

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil#133 is missing a prefactor of j before the cos function.


class Shubert03(dimensions=2)

Shubert 3 objective function.

This class defines the Shubert 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shubert03}}(x) = \sum_{i=1}^n \sum_{j=1}^5 -j 
                          \sin((j+1)x_i + j)

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Shubert03 function

Two-dimensional Shubert03 function


Global optimum: f(x) = -24.062499 for x = [5.791794, 5.791794] (and many others).

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil#134 has wrong global minimum value, and is missing a minus sign before the whole thing.


class Shubert04(dimensions=2)

Shubert 4 objective function.

This class defines the Shubert 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Shubert04}}(x) = \left(\sum_{i=1}^n \sum_{j=1}^5 -j
                          \cos ((j+1)x_i + j)\right)

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Shubert04 function

Two-dimensional Shubert04 function


Global optimum: f(x) = -29.016015 for x = [-0.80032121, -7.08350592] (and many others).

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil#135 has wrong global minimum value, and is missing a minus sign before the whole thing.


class Simpleton(dimensions=10)

Simpleton objective function.


class SineEnvelope(dimensions=2)

SineEnvelope objective function.

This class defines the SineEnvelope global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{SineEnvelope}}(x) = -\sum_{i=1}^{n-1}\left[\frac{\sin^2(
                               \sqrt{x_{i+1}^2+x_{i}^2}-0.5)}
                               {(0.001(x_{i+1}^2+x_{i}^2)+1)^2}
                               + 0.5\right]

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

SineEnvelope function

Two-dimensional SineEnvelope function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil #136


class Sinusoidal(dimensions=2)

Sinusoidal objective function.

Sinusoidal function

Two-dimensional Sinusoidal function



class SixHumpCamel(dimensions=2)

Six Hump Camel objective function.

This class defines the Six Hump Camel global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{SixHumpCamel}}(x) = 4x_1^2+x_1x_2-4x_2^2-2.1x_1^4+
                            4x_2^4+\frac{1}{3}x_1^6

with x_i \in [-5, 5] for i = 1, 2.

SixHumpCamel function

Two-dimensional SixHumpCamel function


Global optimum: f(x) = -1.031628453489877 for x = [0.08984201368301331 , -0.7126564032704135] or x = [-0.08984201368301331, 0.7126564032704135]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Sodp(dimensions=2)

Sodp objective function.

This class defines the Sum Of Different Powers global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Sodp}}(x) = \sum_{i=1}^{n} \lvert{x_{i}}\rvert^{i + 1}

Here, n represents the number of dimensions and x_i \in [-1, 1] for i = 1, ..., n.

Sodp function

Two-dimensional Sodp function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Sphere(dimensions=2)

Sphere objective function.

This class defines the Sphere global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Sphere}}(x) = \sum_{i=1}^{n} x_i^2

Here, n represents the number of dimensions and x_i \in [-1, 1] for i = 1, ..., n.

Sphere function

Two-dimensional Sphere function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil has stupid limits


class SphericalSinc(dimensions=2)

SphericalSinc objective function.

SphericalSinc function

Two-dimensional SphericalSinc function



class Spike(dimensions=2)

Spike objective function.

Spike function

Two-dimensional Spike function



class Step01(dimensions=2)

Step objective function.

This class defines the Step global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Step}}(x) = \sum_{i=1}^{n} \left ( \lfloor x_i
                     + 0.5 \rfloor \right )^2

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Step01 function

Two-dimensional Step01 function


Global optimum: f(x) = 0 for x_i = 0.5 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Step02(dimensions=2)

Step objective function.

This class defines the Step 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Step}}(x) = \sum_{i=1}^{n} \left ( \lfloor x_i
                     + 0.5 \rfloor \right )^2

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, ..., n.

Step02 function

Two-dimensional Step02 function


Global optimum: f(x) = 0 for x_i = 0.5 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Step03(dimensions=2)

Step 3 objective function.

Step03 function

Two-dimensional Step03 function



class Stochastic(dimensions=2)

Stochastic objective function.

This class defines the Stochastic global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Stochastic}}(x) = \sum_{i=1}^{n} \epsilon_i
                            \left | {x_i - \frac{1}{i}} \right |

The variable \epsilon_i, (i=1,...,n) is a random variable uniformly distributed in [0, 1].

Here, n represents the number of dimensions and x_i \in [-5, 5] for i = 1, ..., n.

Stochastic function

Two-dimensional Stochastic function


Global optimum: f(x) = 0 for x_i = [1/n] for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class StretchedV(dimensions=2)

StretchedV objective function.

This class defines the Stretched V global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{StretchedV}}(x) = \sum_{i=1}^{n-1} t^{1/4}
                           [\sin (50t^{0.1}) + 1]^2

Where, in this exercise:

t = x_{i+1}^2 + x_i^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

StretchedV function

Two-dimensional StretchedV function


Global optimum: f(x) = 0 for x = [0., 0.] when n = 2.

Adorio, E. MVF - “Multivariate Test Functions Library in C for Unconstrained Global Optimization”, 2005

Todo

All the sources disagree on the equation, in some the 1 is in the brackets, in others it is outside. In Jamil#142 it’s not even 1. Here we go with the Adorio option.


class StyblinskiTang(dimensions=2)

StyblinskiTang objective function.

This class defines the Styblinski-Tang global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{StyblinskiTang}}(x) = \sum_{i=1}^{n} \left(x_i^4
                                - 16x_i^2 + 5x_i \right)

Here, n represents the number of dimensions and x_i \in [-5, 5] for i = 1, ..., n.

StyblinskiTang function

Two-dimensional StyblinskiTang function


Global optimum: f(x) = -39.16616570377142n for x_i = -2.903534018185960 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Previous topic

N-D Test Functions R

Next topic

N-D Test Functions T

This Page