test_functions N-D Test Functions R

class Rana(dimensions=2)

Rana objective function.

This class defines the Rana global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Rana}}(x) = \sum_{i=1}^{n} \left[x_{i}
\sin\left(\sqrt{\lvert{x_{1} - x_{i} + 1}\rvert}\right)
\cos\left(\sqrt{\lvert{x_{1} + x_{i} + 1}\rvert}\right) +
\left(x_{1} + 1\right) \sin\left(\sqrt{\lvert{x_{1} + x_{i} +
1}\rvert}\right) \cos\left(\sqrt{\lvert{x_{1} - x_{i} +
1}\rvert}\right)\right]

Here, n represents the number of dimensions and x_i \in
[-512.0, 512.0] for i = 1, ..., n.

Rana function

Two-dimensional Rana function


Global optimum: f(x_i) = -928.5478 for x = [-300.3376, 500].

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

homemade global minimum here.


class Rastrigin(dimensions=2)

Rastrigin objective function.

This class defines the Rastrigin global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Rastrigin}}(x) = 10n \sum_{i=1}^n \left[ x_i^2
- 10 \cos(2\pi x_i) \right]

Here, n represents the number of dimensions and x_i \in [-5.12, 5.12] for i = 1, ..., n.

Rastrigin function

Two-dimensional Rastrigin function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Ratkowsky01(dimensions=4)

Ratkowsky objective function.

http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml

Todo

this is a NIST regression standard dataset


class Ratkowsky02(dimensions=3)

Ratkowsky02 objective function.

This class defines the Ratkowsky 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Ratkowsky02}}(x) = \sum_{m=1}^{9}(a_m - x[0] / (1 + exp(x[1]
- b_m x[2]))^2

where

\begin{cases}
a=[8.93, 10.8, 18.59, 22.33, 39.35, 56.11, 61.73, 64.62, 67.08] \\
b=[9., 14., 21., 28., 42., 57., 63., 70., 79.] \\
\end{cases}

Here x_1\in [1, 100], x_2\in [0.1, 5] and x_3\in [0.01, 0.5]

Global optimum: f(x) = 8.0565229338 for x = [7.2462237576e1, 2.6180768402, 6.7359200066e-2]

http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml


class ReduxSum(dimensions=2)

ReduxSum objective function.

ReduxSum function

Two-dimensional ReduxSum function



class Ripple01(dimensions=2)

Ripple 1 objective function.

This class defines the Ripple 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Ripple01}}(x) = \sum_{i=1}^2 -e^{-2 \log 2 
(\frac{x_i-0.1}{0.8})^2} \left[\sin^6(5 \pi x_i)
+ 0.1\cos^2(500 \pi x_i) \right]

with x_i \in [0, 1] for i = 1, 2.

Ripple01 function

Two-dimensional Ripple01 function


Global optimum: f(x) = -2.2 for x_i = 0.1 for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Ripple25(dimensions=2)

Ripple 25 objective function.

This class defines the Ripple 25 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Ripple25}}(x) = \sum_{i=1}^2 -e^{-2 
\log 2 (\frac{x_i-0.1}{0.8})^2}
\left[\sin^6(5 \pi x_i) \right]

Here, n represents the number of dimensions and x_i \in [0, 1] for i = 1, ..., n.

Ripple25 function

Two-dimensional Ripple25 function


Global optimum: f(x) = -2 for x_i = 0.1 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Rosenbrock(dimensions=2)

Rosenbrock objective function.

This class defines the Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Rosenbrock}}(x) = \sum_{i=1}^{n-1} [100(x_i^2
- x_{i+1})^2 + (x_i - 1)^2]

Here, n represents the number of dimensions and x_i \in [-5, 10] for i = 1, ..., n.

Rosenbrock function

Two-dimensional Rosenbrock function


Global optimum: f(x) = 0 for x_i = 1 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class RosenbrockDisc(dimensions=2)

RosenbrockDisc objective function.

RosenbrockDisc function

Two-dimensional RosenbrockDisc function



class RosenbrockModified(dimensions=2)

Modified Rosenbrock objective function.

This class defines the Modified Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{RosenbrockModified}}(x) = 74 + 100(x_2 - x_1^2)^2
+ (1 - x_1)^2 - 400 e^{-\frac{(x_1+1)^2 + (x_2 + 1)^2}{0.1}}

Here, n represents the number of dimensions and x_i \in [-2, 2] for i = 1, 2.

RosenbrockModified function

Two-dimensional RosenbrockModified function


Global optimum: f(x) = 34.04024310 for x = [-0.90955374, -0.95057172]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

We have different global minimum compared to Jamil #106. This is possibly because of the (1-x) term is using the wrong parameter.


class RotatedEllipse01(dimensions=2)

Rotated Ellipse 1 objective function.

This class defines the Rotated Ellipse 1 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{RotatedEllipse01}}(x) = 7x_1^2 - 6 \sqrt{3} x_1x_2 + 13x_2^2

with x_i \in [-500, 500] for i = 1, 2.

RotatedEllipse01 function

Two-dimensional RotatedEllipse01 function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class RotatedEllipse02(dimensions=2)

Rotated Ellipse 2 objective function.

This class defines the Rotated Ellipse 2 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{RotatedEllipse02}}(x) = x_1^2 - x_1 x_2 + x_2^2

with x_i \in [-500, 500] for i = 1, 2.

RotatedEllipse02 function

Two-dimensional RotatedEllipse02 function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Previous topic

N-D Test Functions Q

Next topic

N-D Test Functions S

This Page