N-D Test Functions R¶Rana objective function.
This class defines the Rana global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Rana}}(x) = \sum_{i=1}^{n} \left[x_{i}
\sin\left(\sqrt{\lvert{x_{1} - x_{i} + 1}\rvert}\right)
\cos\left(\sqrt{\lvert{x_{1} + x_{i} + 1}\rvert}\right) +
\left(x_{1} + 1\right) \sin\left(\sqrt{\lvert{x_{1} + x_{i} +
1}\rvert}\right) \cos\left(\sqrt{\lvert{x_{1} - x_{i} +
1}\rvert}\right)\right]](_images/math/3df18b89478db2398b997191f1d295da2be84a04.png)
Here, 
 represents the number of dimensions and 
 for 
.
Two-dimensional Rana function
Global optimum: 
 for
.
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Todo
homemade global minimum here.
Rastrigin objective function.
This class defines the Rastrigin global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Rastrigin}}(x) = 10n \sum_{i=1}^n \left[ x_i^2
- 10 \cos(2\pi x_i) \right]](_images/math/a34a8418cd50fd1189796935c1afbb65885bf732.png)
Here, 
 represents the number of dimensions and
 for 
.
Two-dimensional Rastrigin function
Global optimum: 
 for 
 for

Gavana, A. Global Optimization Benchmarks and AMPGO
Ratkowsky objective function.
http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml
Todo
this is a NIST regression standard dataset
Ratkowsky02 objective function.
This class defines the Ratkowsky 2 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Ratkowsky02}}(x) = \sum_{m=1}^{9}(a_m - x[0] / (1 + exp(x[1]
- b_m x[2]))^2](_images/math/9197cc273c5f6e508b3d121574810bef54a1eecb.png)
where
![\begin{cases}
a=[8.93, 10.8, 18.59, 22.33, 39.35, 56.11, 61.73, 64.62, 67.08] \\
b=[9., 14., 21., 28., 42., 57., 63., 70., 79.] \\
\end{cases}](_images/math/65c6fbe02025eb93f6407d6d40e7f265eb8f6faf.png)
Here 
, 
 and
![x_3\in [0.01, 0.5]](_images/math/0a835efb213f42a106c02327e398457dedaf7f49.png)
Global optimum: 
 for
![x = [7.2462237576e1, 2.6180768402, 6.7359200066e-2]](_images/math/c427f22cc88e777dfdeea4c52272805757ed413a.png)
http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky2.shtml
ReduxSum objective function.
Two-dimensional ReduxSum function
Ripple 1 objective function.
This class defines the Ripple 1 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Ripple01}}(x) = \sum_{i=1}^2 -e^{-2 \log 2 
(\frac{x_i-0.1}{0.8})^2} \left[\sin^6(5 \pi x_i)
+ 0.1\cos^2(500 \pi x_i) \right]](_images/math/c63bd85201b316174fbb3559c9a0833bb1ce2888.png)
with 
 for 
.
Two-dimensional Ripple01 function
Global optimum: 
 for 
 for

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Ripple 25 objective function.
This class defines the Ripple 25 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Ripple25}}(x) = \sum_{i=1}^2 -e^{-2 
\log 2 (\frac{x_i-0.1}{0.8})^2}
\left[\sin^6(5 \pi x_i) \right]](_images/math/ab1d3db87646b205a34a74623100a057c95b855d.png)
Here, 
 represents the number of dimensions and
 for 
.
Two-dimensional Ripple25 function
Global optimum: 
 for 
 for

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Rosenbrock objective function.
This class defines the Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Rosenbrock}}(x) = \sum_{i=1}^{n-1} [100(x_i^2
- x_{i+1})^2 + (x_i - 1)^2]](_images/math/0168e249a4ea9b5170e48aff07aa00f56ac87dc8.png)
Here, 
 represents the number of dimensions and
 for 
.
Two-dimensional Rosenbrock function
Global optimum: 
 for 
 for

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
RosenbrockDisc objective function.
Two-dimensional RosenbrockDisc function
Modified Rosenbrock objective function.
This class defines the Modified Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows:

Here, 
 represents the number of dimensions and
 for 
.
Two-dimensional RosenbrockModified function
Global optimum: 
 for
![x = [-0.90955374, -0.95057172]](_images/math/859989944c6dd240a651afd94ddd21b56b4f5838.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Todo
We have different global minimum compared to Jamil #106. This is possibly because of the (1-x) term is using the wrong parameter.
Rotated Ellipse 1 objective function.
This class defines the Rotated Ellipse 1 global optimization problem. This is a unimodal minimization problem defined as follows:

with 
 for 
.
Two-dimensional RotatedEllipse01 function
Global optimum: 
 for ![x = [0, 0]](_images/math/45f5b5de4a67315f59227449efaecb2b749a4db5.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Rotated Ellipse 2 objective function.
This class defines the Rotated Ellipse 2 global optimization problem. This is a unimodal minimization problem defined as follows:

with 
 for 
.
Two-dimensional RotatedEllipse02 function
Global optimum: 
 for ![x = [0, 0]](_images/math/45f5b5de4a67315f59227449efaecb2b749a4db5.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.