test_functions N-D Test Functions M

class Matyas(dimensions=2)

Matyas objective function.

This class defines the Matyas global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Matyas}}(x) = 0.26(x_1^2 + x_2^2) - 0.48 x_1 x_2

with x_i \in [-10, 10] for i = 1, 2.

Matyas function

Two-dimensional Matyas function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class McCormick(dimensions=2)

McCormick objective function.

This class defines the McCormick global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{McCormick}}(x) = - x_{1} + 2 x_{2} + \left(x_{1}
- x_{2}\right)^{2} + \sin\left(x_{1} + x_{2}\right) + 1

with x_1\in [-1.5, 4], x_2\in [-3, 4].

McCormick function

Two-dimensional McCormick function


Global optimum: f(x) = -1.913222954981037 for x = [-0.5471975602214493, -1.547197559268372]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Meyer(dimensions=3)

Meyer objective function.

http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml

Todo

NIST regression standard


class MeyerRoth(dimensions=3)

MeyerRoth objective function.


class Michalewicz(dimensions=2)

Michalewicz objective function.

This class defines the Michalewicz global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Michalewicz}}(x) = - \sum_{i=1}^{2} \sin\left(x_i\right)
\sin^{2 m}\left(\frac{i x_i^{2}}{\pi}\right)

Where, in this exercise, m = 10.

with x_i \in [0, \pi] for i = 1, 2.

Michalewicz function

Two-dimensional Michalewicz function


Global optimum: f(x_i) = -1.8013 for x = [0, 0]

Adorio, E. MVF - “Multivariate Test Functions Library in C for Unconstrained Global Optimization”, 2005

Todo

could change dimensionality, but global minimum might change.


class MieleCantrell(dimensions=4)

Miele-Cantrell objective function.

This class defines the Miele-Cantrell global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{MieleCantrell}}({x}) = (e^{-x_1} - x_2)^4 + 100(x_2 - x_3)^6
+ \tan^4(x_3 - x_4) + x_1^8

with x_i \in [-1, 1] for i = 1, ..., 4.

Global optimum: f(x) = 0 for x = [0, 1, 1, 1]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Mishra01(dimensions=2)

Mishra 1 objective function.

This class defines the Mishra 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra01}}(x) = (1 + x_n)^{x_n}

where

x_n = n - \sum_{i=1}^{n-1} x_i

with x_i \in [0, 1] for i =1, ..., n.

Mishra01 function

Two-dimensional Mishra01 function


Global optimum: f(x) = 2 for x_i = 1 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Mishra02(dimensions=2)

Mishra 2 objective function.

This class defines the Mishra 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra02}}({x}) = (1 + x_n)^{x_n}

with

x_n = n - \sum_{i=1}^{n-1} \frac{(x_i + x_{i+1})}{2}

Here, n represents the number of dimensions and x_i \in [0, 1] for i = 1, ..., n.

Mishra02 function

Two-dimensional Mishra02 function


Global optimum: f(x) = 2 for x_i = 1 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Mishra03(dimensions=2)

Mishra 3 objective function.

This class defines the Mishra 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra03}}(x) = \sqrt{\lvert \cos{\sqrt{\lvert x_1^2 
+ x_2^2 \rvert}} \rvert} + 0.01(x_1 + x_2)

with x_i \in [-10, 10] for i = 1, 2.

Mishra03 function

Two-dimensional Mishra03 function


Global optimum: f(x) = -0.1999 for x = [-9.99378322, -9.99918927]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

I think that Jamil#76 has the wrong global minimum, a smaller one is possible


class Mishra04(dimensions=2)

Mishra 4 objective function.

This class defines the Mishra 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra04}}({x}) = \sqrt{\lvert \sin{\sqrt{\lvert
x_1^2 + x_2^2 \rvert}} \rvert} + 0.01(x_1 + x_2)

with x_i \in [-10, 10] for i = 1, 2.

Mishra04 function

Two-dimensional Mishra04 function


Global optimum: f(x) = -0.17767 for x = [-8.71499636, -9.0533148]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

I think that Jamil#77 has the wrong minimum, not possible


class Mishra05(dimensions=2)

Mishra 5 objective function.

This class defines the Mishra 5 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra05}}(x) = \left [ \sin^2 ((\cos(x_1) + \cos(x_2))^2)
+ \cos^2 ((\sin(x_1) + \sin(x_2))^2) + x_1 \right ]^2 + 0.01(x_1 + x_2)

with x_i \in [-10, 10] for i = 1, 2.

Mishra05 function

Two-dimensional Mishra05 function


Global optimum: f(x) = -0.119829 for x = [-1.98682, -10]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

Line 381 in paper


class Mishra06(dimensions=2)

Mishra 6 objective function.

This class defines the Mishra 6 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra06}}(x) = -\log{\left [ \sin^2 ((\cos(x_1)
+ \cos(x_2))^2) - \cos^2 ((\sin(x_1) + \sin(x_2))^2) + x_1 \right ]^2}
+ 0.01 \left[(x_1 -1)^2 + (x_2 - 1)^2 \right]

with x_i \in [-10, 10] for i = 1, 2.

Mishra06 function

Two-dimensional Mishra06 function


Global optimum: f(x_i) = -2.28395 for x = [2.88631, 1.82326]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

line 397


class Mishra07(dimensions=2)

Mishra 7 objective function.

This class defines the Mishra 7 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra07}}(x) = \left [\prod_{i=1}^{n} x_i - n! \right]^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Mishra07 function

Two-dimensional Mishra07 function


Global optimum: f(x) = 0 for x_i = \sqrt{n} for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Mishra08(dimensions=2)

Mishra 8 objective function.

This class defines the Mishra 8 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra08}}(x) = 0.001 \left[\lvert x_1^{10} - 20x_1^9
+ 180x_1^8 - 960 x_1^7 + 3360x_1^6 - 8064x_1^5 + 13340x_1^4 - 15360x_1^3
+ 11520x_1^2 - 5120x_1 + 2624 \rvert \lvert x_2^4 + 12x_2^3 + 54x_2^2
+ 108x_2 + 81 \rvert \right]^2

with x_i \in [-10, 10] for i = 1, 2.

Mishra08 function

Two-dimensional Mishra08 function


Global optimum: f(x) = 0 for x = [2, -3]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

Line 1065


class Mishra09(dimensions=3)

Mishra 9 objective function.

This class defines the Mishra 9 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra09}}({x}) = \left[ ab^2c + abc^2 + b^2
+ (x_1 + x_2 - x_3)^2 \right]^2

Where, in this exercise:

\begin{cases}
a = 2x_1^3 + 5x_1x_2 + 4x_3 - 2x_1^2x_3 - 18 \\
b = x_1 + x_2^3 + x_1x_2^2 + x_1x_3^2 - 22 \\
c = 8x_1^2 + 2x_2x_3 + 2x_2^2 + 3x_2^3 - 52 \\
\end{cases}

with x_i \in [-10, 10] for i = 1, 2, 3.

Global optimum: f(x) = 0 for x = [1, 2, 3]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

Line 1103


class Mishra10(dimensions=2)

Mishra 10 objective function.

This class defines the Mishra 10 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra10}}({x}) = \left[ \lfloor x_1 \perp x_2 \rfloor - \lfloor x_1 \rfloor - \lfloor x_2 \rfloor \right]^2

with x_i \in [-10, 10] for i =1, 2.

Mishra10 function

Two-dimensional Mishra10 function


Global optimum: f(x) = 0 for x = [2, 2]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

  • int(x) should be used instead of floor(x)!!!!!

class Mishra10b(dimensions=2)

Mishra 10b objective function.

Mishra10b function

Two-dimensional Mishra10b function



class Mishra11(dimensions=2)

Mishra 11 objective function.

This class defines the Mishra 11 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Mishra11}}(x) = \left [ \frac{1}{n} \sum_{i=1}^{n} \lvert x_i
\rvert - \left(\prod_{i=1}^{n} \lvert x_i \rvert \right )^{\frac{1}{n}}
\right]^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Mishra11 function

Two-dimensional Mishra11 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class MullerBrown(dimensions=2)

MullerBrown objective function.

MullerBrown function

Two-dimensional MullerBrown function



class MultiGaussian(dimensions=2)

MultiGaussian objective function.

MultiGaussian function

Two-dimensional MultiGaussian function



class MultiModal(dimensions=2)

MultiModal objective function.

This class defines the MultiModal global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{MultiModal}}(x) = \left( \sum_{i=1}^n \lvert x_i \rvert 
\right) \left( \prod_{i=1}^n \lvert x_i \rvert \right)

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

MultiModal function

Two-dimensional MultiModal function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO

Previous topic

N-D Test Functions L

Next topic

N-D Test Functions N

This Page