N-D Test Functions L¶Langermann objective function.
This class defines the Langermann global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Langermann}}(x) = - \sum_{i=1}^{5}
\frac{c_i \cos\left\{\pi \left[\left(x_{1}- a_i\right)^{2}
+ \left(x_{2} - b_i \right)^{2}\right]\right\}}{e^{\frac{\left( x_{1}
- a_i\right)^{2} + \left( x_{2} - b_i\right)^{2}}{\pi}}}](_images/math/d4992e1a074997753725700f860a1ebfe810f96a.png)
Where:
![\begin{matrix}
a = [3, 5, 2, 1, 7] \\
b = [5, 2, 1, 4, 9]\\
c = [1, 2, 5, 2, 3] \\
\end{matrix}](_images/math/1d42f9a2b896c06a8fdf4234dd3a3c8ce851bef9.png)
Here
for
.
Two-dimensional Langermann function
Global optimum:
for ![x = [2.00299219, 1.006096]](_images/math/ab00d9a0fa87fa03dab48473c51ed90788fbb7c7.png)
Gavana, A. Global Optimization Benchmarks and AMPGO
Todo
Langermann from Gavana is not the same as Jamil #68.
LennardJones objective function.
This class defines the Lennard-Jones global optimization problem. This is a multimodal minimization problem defined as follows:

Where, in this exercise:

Valid for any dimension,
.
is the number of atoms in 3-D space constraints: unconstrained type:
multi-modal with one global minimum; non-separable
Value-to-reach:
. See array of minima below;
additional minima available at the Cambridge cluster database:
http://www-wales.ch.cam.ac.uk/~jon/structures/LJ/tables.150.html
Here,
represents the number of dimensions and
for
.
Global optimum:
![\text{minima} = [-1.,-3.,-6.,-9.103852,-12.712062,-16.505384, -19.821489, -24.113360, \\
-28.422532,-32.765970, -37.967600,-44.326801, -47.845157,-52.322627, \\
-56.815742,-61.317995, -66.530949, -72.659782, -77.1777043]\\](_images/math/ccb394f6d44f7ed029478e02ca8af952310722f5.png)
Leon objective function.
This class defines the Leon global optimization problem. This is a multimodal minimization problem defined as follows:

with
for
.
Two-dimensional Leon function
Global optimum:
for ![x = [1, 1]](_images/math/aca84c9635cb3f5577f7ae4d6f015415a512a7cb.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Levy 3 objective function.
This class defines the Levy 3 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Levy03}}(\mathbf{x}) = \sin^2(\pi y_1)+\sum_{i=1}^{n-1}(y_i-1)^2[1+10\sin^2(\pi y_{i+1})]+(y_n-1)^2](_images/math/ede8ef160dbeb592ad23ef62fb2a4d2f6ad446d1.png)
Where, in this exercise:

Here,
represents the number of dimensions and
for
.
Two-dimensional Levy03 function
Global optimum:
for
for 
Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005
Todo
not clear what the Levy function definition is. Gavana, Mishra, Adorio have different forms. Indeed Levy 3 docstring from Gavana disagrees with the Gavana code! The following code is from the Mishra listing of Levy08.
Levy 5 objective function.
This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Levy05}}(\mathbf{x}) = \sum_{i=1}^{5} i \cos \left[(i-1)x_1 + i \right] \times \sum_{j=1}^{5} j \cos \left[(j+1)x_2 + j \right] + (x_1 + 1.42513)^2 + (x_2 + 0.80032)^2](_images/math/2d94d681bf2dfbe33e12b0368180954e523689b5.png)
Here,
represents the number of dimensions and
for
.
Two-dimensional Levy05 function
Global optimum:
for
.
Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005
Levy13 objective function.
This class defines the Levy13 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Levy13}}(x) = \left(x_{1} -1\right)^{2} \left[\sin^{2}
\left(3 \pi x_{2}\right) + 1\right] + \left(x_{2}
- 1\right)^{2} \left[\sin^{2}\left(2 \pi x_{2}\right)
+ 1\right] + \sin^{2}\left(3 \pi x_{1}\right)](_images/math/8a5765f7cc169b3aedf519e6a97f19c0a89d0978.png)
with
for
.
Two-dimensional Levy13 function
Global optimum:
for ![x = [1, 1]](_images/math/aca84c9635cb3f5577f7ae4d6f015415a512a7cb.png)
Mishra, S. Some new test functions for global optimization and performance of repulsive particle swarm method. Munich Personal RePEc Archive, 2006, 2718
LunacekBiRastrigin objective function.
Two-dimensional LunacekBiRastrigin function
LunacekBiSphere objective function.
Two-dimensional LunacekBiSphere function