test_functions N-D Test Functions N

class NeedleEye(dimensions=2)

NeedleEye objective function.

This class defines the Needle-Eye global optimization problem. This is a a multimodal minimization problem defined as follows:

f_{\text{NeedleEye}}(x) = \begin{cases} 1 & \textrm{if} \hspace{5pt} \lvert x_i \rvert  <  eye \hspace{5pt} \forall i \\
       \sum_{i=1}^n (100 + \lvert x_i \rvert) & \textrm{if} \hspace{5pt} \lvert x_i \rvert > eye \\
       0 & \textrm{otherwise} \end{cases}

Where, in this exercise, eye = 0.0001.

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

NeedleEye function

Two-dimensional NeedleEye function


Global optimum: f(x) = 1 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class NewFunction01(dimensions=2)

NewFunction01 objective function.

This class defines the NewFunction01 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{NewFunction01}}(x) = \left | {\cos\left(\sqrt{\left|{x_{1}^{2}
+ x_{2}}\right|}\right)} \right |^{0.5} + (x_{1} + x_{2})/100

with x_i \in [-10, 10] for i = 1, 2.

NewFunction01 function

Two-dimensional NewFunction01 function


Global optimum: f(x) = -0.18459899925 for x = [-8.46669057, -9.99982177]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005


class NewFunction02(dimensions=2)

NewFunction02 objective function.

This class defines the NewFunction02 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{NewFunction02}}(x) = \left | {\sin\left(\sqrt{\lvert{x_{1}^{2}
+ x_{2}}\rvert}\right)} \right |^{0.5} + (x_{1} + x_{2})/100

with x_i \in [-10, 10] for i = 1, 2.

NewFunction02 function

Two-dimensional NewFunction02 function


Global optimum: f(x) = -0.19933159253 for x = [-9.94103375, -9.99771235]

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Warning

minimum value is estimated from running many optimisations and choosing the best.

Previous topic

N-D Test Functions M

Next topic

N-D Test Functions O

This Page