test_functions N-D Test Functions C

class CarromTable(dimensions=2)

CarromTable objective function.

The CarromTable global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{CarromTable}}(x) = - \frac{1}{30}\left(\cos(x_1)cos(x_2) e^{\left|1 - \frac{\sqrt{x_1^2 + x_2^2}}{\pi}\right|}\right)^2

with x_i \in [-10, 10] for i = 1, 2.

CarromTable function

Two-dimensional CarromTable function


Global optimum: f(x) = -24.15681551650653 for x_i = \pm
9.646157266348881 for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Chichinadze(dimensions=2)

Chichinadze objective function.

This class defines the Chichinadze global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Chichinadze}}(x) = x_{1}^{2} - 12 x_{1} + 8 \sin\left(\frac{5}{2} \pi x_{1}\right) + 10 \cos\left(\frac{1}{2} \pi x_{1}\right) + 11 - 0.2 \frac{\sqrt{5}}{e^{\frac{1}{2} \left(x_{2} -0.5\right)^{2}}}

with x_i \in [-30, 30] for i = 1, 2.

Chichinadze function

Two-dimensional Chichinadze function


Global optimum: f(x) = -42.94438701899098 for x =
[6.189866586965680, 0.5]

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil#33 has a dividing factor of 2 in the sin term. However, f(x) for the given solution does not give the global minimum. i.e. the equation is at odds with the solution. Only by removing the dividing factor of 2, i.e. 8 * sin(5 * pi * x[0]) does the given solution result in the given global minimum. Do we keep the result or equation?


class Cigar(dimensions=2)

Cigar objective function.

This class defines the Cigar global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Cigar}}(x) = x_1^2 + 10^6\sum_{i=2}^{n} x_i^2

Here, n represents the number of dimensions and x_i \in
[-100, 100] for i = 1, ..., n.

Cigar function

Two-dimensional Cigar function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Cola(dimensions=17)

Cola objective function.

This class defines the Cola global optimization problem. The 17-dimensional function computes indirectly the formula f(n, u) by setting x_0 = y_0, x_1 = u_0, x_i = u_{2(i2)}, y_i = u_{2(i2)+1} :

f_{\text{Cola}}(x) = \sum_{i<j}^{n} \left (r_{i,j} - d_{i,j} \right )^2

Where r_{i, j} is given by:

r_{i, j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}

And d is a symmetric matrix given by:

\mathbf{d} = \left [ d_{ij} \right ] = \begin{pmatrix} \\
1.27 &  &  &  &  &  &  &  & \\
1.69 & 1.43 &  &  &  &  &  &  & \\
2.04 & 2.35 & 2.43 &  &  &  &  &  & \\
3.09 & 3.18 & 3.26 & 2.85  &  &  &  &  & \\
3.20 & 3.22 & 3.27 & 2.88 & 1.55 &  &  &  & \\
2.86 & 2.56 & 2.58 & 2.59 & 3.12 & 3.06  &  &  & \\
3.17 & 3.18 & 3.18 & 3.12 & 1.31 & 1.64 & 3.00  & \\
3.21 & 3.18 & 3.18 & 3.17 & 1.70 & 1.36 & 2.95 & 1.32  & \\
2.38 & 2.31 & 2.42 & 1.94 & 2.85 & 2.81 & 2.56 & 2.91 & 2.97
\end{pmatrix}

This function has bounds x_0\in [0, 4] and x_i \in [-4, 4] for i = 1, ..., n-1. Global optimum 11.7464.

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Colville(dimensions=4)

Colville objective function.

This class defines the Colville global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Colville}}(x) = \left(x_{1} -1\right)^{2} + 100 \left(x_{1}^{2} - x_{2}\right)^{2} + 10.1 \left(x_{2} -1\right)^{2} + \left(x_{3} -1\right)^{2} + 90 \left(x_{3}^{2} - x_{4}\right)^{2} + 10.1 \left(x_{4} -1\right)^{2} + 19.8 \frac{x_{4} -1}{x_{2}}

with x_i \in [-10, 10] for i = 1, ..., 4.

Global optimum: f(x) = 0 for x_i = 1 for i = 1, ..., 4

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

docstring equation is wrong use Jamil#36


class Corana(dimensions=4)

Corana test objective function.

This class defines the Corana global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Corana}}(x) = \begin{cases} \sum_{i=1}^n 0.15 d_i [z_i - 0.05\textrm{sgn}(z_i)]^2 & \textrm{if }|x_i-z_i| < 0.05 \\
       d_ix_i^2 & \textrm{otherwise}\end{cases}

Where, in this exercise:

z_i = 0.2 \lfloor |x_i/s_i|+0.49999\rfloor\textrm{sgn}(x_i), d_i=(1,1000,10,100, ...)

Here, n represents the number of dimensions and x_i \in [-5, 5] for i=1,...,4.

Corana function

Two-dimensional Corana function


Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,4

Gavana, A. Global Optimization Benchmarks and AMPGO


class CosineMixture(dimensions=2)

Cosine Mixture objective function.

This class defines the Cosine Mixture global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CosineMixture}}(x) = -0.1 \sum_{i=1}^n \cos(5 \pi x_i) - \sum_{i=1}^n x_i^2

Here, n represents the number of dimensions and x_i \in
[-1, 1] for i = 1, ..., N.

CosineMixture function

Two-dimensional CosineMixture function


Global optimum: f(x) = -0.1N for x_i = -1 for i = 1, ..., N

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil #38 has wrong minimum and wrong fglob. I plotted it. -(x**2) term is always negative if x is negative. cos(5 * pi * x) is equal to -1 for x=-1.


class Crescent(dimensions=2)

Crescent objective function.

Crescent function

Two-dimensional Crescent function



class CrossInTray(dimensions=2)

Cross-in-Tray objective function.

This class defines the Cross-in-Tray global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrossInTray}}(x) = - 0.0001 \left(\left|{e^{\left|{100 - \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} \sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}

with x_i \in [-15, 15] for i = 1, 2.

CrossInTray function

Two-dimensional CrossInTray function


Global optimum: f(x) = -2.062611870822739 for x_i = \pm 1.349406608602084 for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class CrossLegTable(dimensions=2)

Cross-Leg-Table objective function.

This class defines the Cross-Leg-Table global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrossLegTable}}(x) = - \frac{1}{\left(\left|{e^{\left|{100
- \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} 
\sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}}

with x_i \in [-10, 10] for i = 1, 2.

CrossLegTable function

Two-dimensional CrossLegTable function


Global optimum: f(x) = -1. The global minimum is found on the planes x_1 = 0 and x_2 = 0

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions Munich University, 2006


class CrownedCross(dimensions=2)

Crowned Cross objective function.

This class defines the Crowned Cross global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrownedCross}}(x) = 0.0001 \left(\left|{e^{\left|{100
- \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|}
\sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}

with x_i \in [-10, 10] for i = 1, 2.

CrownedCross function

Two-dimensional CrownedCross function


Global optimum: f(x_i) = 0.0001. The global minimum is found on the planes x_1 = 0 and x_2 = 0

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions Munich University, 2006


class Csendes(dimensions=2)

Csendes objective function.

This class defines the Csendes global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Csendes}}(x) = \sum_{i=1}^n x_i^6 \left[ 2 + \sin
\left( \frac{1}{x_i} \right ) \right]

Here, n represents the number of dimensions and x_i \in
[-1, 1] for i = 1, ..., N.

Csendes function

Two-dimensional Csendes function


Global optimum: f(x) = 0.0 for x_i = 0 for i = 1, ..., N

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Cube(dimensions=2)

Cube objective function.

This class defines the Cube global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Cube}}(x) = 100(x_2 - x_1^3)^2 + (1 - x1)^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,N.

Cube function

Two-dimensional Cube function


Global optimum: f(x_i) = 0.0 for x = [1, 1]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

jamil#41 has the wrong solution.

Previous topic

N-D Test Functions B

Next topic

N-D Test Functions D

This Page