test_functions N-D Test Functions B

class BartelsConn(dimensions=2)

Bartels-Conn objective function.

The BartelsConn global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{BartelsConn}}(x) = \lvert {x_1^2 + x_2^2 + x_1x_2} \rvert +
 \lvert {\sin(x_1)} \rvert + \lvert {\cos(x_2)} \rvert

with x_i \in [-500, 500] for i = 1, 2.

BartelsConn function

Two-dimensional BartelsConn function


Global optimum: f(x) = 1 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Beale(dimensions=2)

Beale objective function.

The Beale global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Beale}}(x) = \left(x_1 x_2 - x_1 + 1.5\right)^{2} +
\left(x_1 x_2^{2} - x_1 + 2.25\right)^{2} + \left(x_1 x_2^{3} - x_1 +
2.625\right)^{2}

with x_i \in [-4.5, 4.5] for i = 1, 2.

Beale function

Two-dimensional Beale function


Global optimum: f(x) = 0 for x=[3, 0.5]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BiggsExp02(dimensions=2)

BiggsExp02 objective function.

The BiggsExp02 global optimization problem is a multimodal minimization problem defined as follows

\begin{matrix} \\
f_{\text{BiggsExp02}}(x) = \sum_{i=1}^{10} (e^{-t_i x_1} - 5 e^{-t_i x_2} - y_i)^2 \\
t_i = 0.1 i \\
y_i = e^{-t_i} - 5 e^{-10t_i} \\
\end{matrix}

with x_i \in [0, 20] for i = 1, 2.

BiggsExp02 function

Two-dimensional BiggsExp02 function


Global optimum: f(x) = 0 for x = [1, 10]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BiggsExp03(dimensions=3)

BiggsExp03 objective function.

The BiggsExp03 global optimization problem is a multimodal minimization problem defined as follows

\begin{matrix}
f_{\text{BiggsExp03}}(x) = \sum_{i=1}^{10} (e^{-t_i x_1} - x_3e^{-t_i x_2} - y_i)^2 \\
t_i = 0.1i \\
y_i = e^{-t_i} - 5e^{-10 t_i} \\
\end{matrix}

with x_i \in [0, 20] for i = 1, 2, 3.

Global optimum: f(x) = 0 for x = [1, 10, 5]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BiggsExp04(dimensions=4)

BiggsExp04 objective function.

The BiggsExp04 global optimization problem is a multimodal minimization problem defined as follows

\begin{matrix} \\
f_{\text{BiggsExp04}}(x) = \sum_{i=1}^{10} (x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} - y_i)^2 \\
t_i = 0.1i \\
y_i = e^{-t_i} - 5 e^{-10 t_i} \\
\end{matrix}

with x_i \in [0, 20] for i = 1, ..., 4.

Global optimum: f(x) = 0 for x = [1, 10, 1, 5]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BiggsExp05(dimensions=5)

BiggsExp05 objective function.

The BiggsExp05 global optimization problem is a multimodal minimization problem defined as follows

\begin{matrix} \\
f_{\text{BiggsExp05}}(x) = \sum_{i=1}^{11}(x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} + 3 e^{-t_i x_5} - y_i)^2 \\
t_i = 0.1i \\
y_i = e^{-t_i} - 5e^{-10 t_i} + 3e^{-4 t_i} \\
\end{matrix}

with x_i \in [0, 20] for i=1, ..., 5.

Global optimum: f(x) = 0 for x = [1, 10, 1, 5, 4]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BiggsExp06(dimensions=6)

BiggsExp06 objective function.


class Bird(dimensions=2)

Bird objective function.

The Bird global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Bird}}(x) = \left(x_1 - x_2\right)^{2} + e^{\left[1 -
 \sin\left(x_1\right) \right]^{2}} \cos\left(x_2\right) + e^{\left[1 -
  \cos\left(x_2\right)\right]^{2}} \sin\left(x_1\right)

with x_i \in [-2\pi, 2\pi]

Bird function

Two-dimensional Bird function


Global optimum: f(x) = -106.7645367198034 for x
= [4.701055751981055, 3.152946019601391] or x =
[-1.582142172055011, -3.130246799635430]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Bohachevsky01(dimensions=2)

Bohachevsky 1 objective function.

The Bohachevsky 1 global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Bohachevsky01}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i+1}) + 0.7 \right]

Here, n represents the number of dimensions and x_i \in
[-15, 15] for i = 1, ..., n.

Bohachevsky01 function

Two-dimensional Bohachevsky01 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1,
..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

equation needs to be fixed up in the docstring. see Jamil#17


class Bohachevsky02(dimensions=2)

Bohachevsky 2 objective function.

The Bohachevsky 2 global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Bohachevsky02}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right]

Here, n represents the number of dimensions and x_i \in
[-15, 15] for i = 1, ..., n.

Bohachevsky02 function

Two-dimensional Bohachevsky02 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1,
..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

equation needs to be fixed up in the docstring. Jamil is also wrong. There should be no 0.4 factor in front of the cos term


class Bohachevsky03(dimensions=2)

Bohachevsky 3 objective function.

The Bohachevsky 3 global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Bohachevsky02}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right]

Here, n represents the number of dimensions and x_i \in
[-15, 15] for i = 1, ..., n.

Bohachevsky03 function

Two-dimensional Bohachevsky03 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1,
..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

equation needs to be fixed up in the docstring. Jamil#19


class Booth(dimensions=2)

Booth objective function.

Booth function

Two-dimensional Booth function



class BoxBetts(dimensions=3)

BoxBetts objective function.

The BoxBetts global optimization problem is a multimodal minimization problem defined as follows

f_{\text{BoxBetts}}(x) = \sum_{i=1}^k g(x_i)^2

Where, in this exercise:

g(x) = e^{-0.1i x_1} - e^{-0.1i x_2} - x_3\left[e^{-0.1i} - e^{-i}\right]

And k = 10.

Here, x_1\in [0.9, 1.2], x_2\in [9, 11.2], x_3\in [0.9, 1.2].

Global optimum: f(x) = 0 for x = [1, 10, 1]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Brad(dimensions=3)

Brad objective function.


class Branin01(dimensions=2)

Branin01 objective function.

The Branin01 global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Branin01}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}} + 5
\frac{x_1}{\pi} + x_2 -6\right)^{2} + \left(10 -\frac{5}{4 \pi} \right)
\cos\left(x_1\right) + 10

with x_1\in [-5, 10], x_2\in [0, 15]

Branin01 function

Two-dimensional Branin01 function


Global optimum: f(x) = 0.39788735772973816 for x =
[-\pi, 12.275] or x = [\pi, 2.275] or x = [3\pi, 2.475]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil#22, one of the solutions is different


class Branin02(dimensions=2)

Branin02 objective function.

The Branin02 global optimization problem is a multimodal minimization problem defined as follows

f_{\text{Branin02}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}}
+ 5 \frac{x_1}{\pi} + x_2 - 6 \right)^{2} + \left(10 - \frac{5}{4 \pi}
\right) \cos\left(x_1\right) \cos\left(x_2\right)
+ \log(x_1^2+x_2^2 + 1) + 10

with x_i \in [-5, 15] for i = 1, 2.

Branin02 function

Two-dimensional Branin02 function


Global optimum: f(x) = 5.559037 for x = [-3.2, 12.53]

Gavana, A. Global Optimization Benchmarks and AMPGO


class Brent(dimensions=2)

Brent objective function.

The Brent global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Brent}}(x) = (x_1 + 10)^2 + (x_2 + 10)^2 + e^{(-x_1^2 -x_2^2)}

with x_i \in [-10, 10] for i = 1, 2.

Brent function

Two-dimensional Brent function


Global optimum: f(x) = 0 for x = [-10, -10]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

solution is different to Jamil#24


class Brown(dimensions=2)

Brown objective function.

The Brown global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Brown}}(x) = \sum_{i=1}^{n-1}\left[
\left(x_i^2\right)^{x_{i + 1}^2 + 1}
+ \left(x_{i + 1}^2\right)^{x_i^2 + 1}\right]

with x_i \in [-1, 4] for i=1,...,n.

Brown function

Two-dimensional Brown function


Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class BuecheRastrigin(dimensions=2)

BuecheRastrigin objective function.

BuecheRastrigin function

Two-dimensional BuecheRastrigin function



class Bukin02(dimensions=2)

Bukin02 objective function.

The Bukin02 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Bukin02}}(x) = 100 (x_2^2 - 0.01x_1^2 + 1)
+ 0.01(x_1 + 10)^2

with x_1\in [-15, -5], x_2\in [-3, 3]

Bukin02 function

Two-dimensional Bukin02 function


Global optimum: f(x) = -124.75 for x = [-15, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

I think that Gavana and Jamil are wrong on this function. In both sources the x[1] term is not squared. As such there will be a minimum at the smallest value of x[1].


class Bukin04(dimensions=2)

Bukin04 objective function.

The Bukin04 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Bukin04}}(x) = 100 x_2^{2} + 0.01 \lvert{x_1 + 10}
\rvert

with x_1\in [-15, -5], x_2\in [-3, 3]

Bukin04 function

Two-dimensional Bukin04 function


Global optimum: f(x) = 0 for x = [-10, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Bukin06(dimensions=2)

Bukin06 objective function.

The Bukin06 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Bukin06}}(x) = 100 \sqrt{ \lvert{x_2 - 0.01 x_1^{2}}
\rvert} + 0.01 \lvert{x_1 + 10} \rvert

with x_1\in [-15, -5], x_2\in [-3, 3]

Bukin06 function

Two-dimensional Bukin06 function


Global optimum: f(x) = 0 for x = [-10, 1]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Previous topic

N-D Test Functions A

Next topic

N-D Test Functions C

This Page