test_functions N-D Test Functions A

class Ackley01(dimensions=2)

Ackley01 objective function.

The Ackley01 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Ackley01}}(x) = -20 e^{-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^n \cos(2 \pi x_i)} + 20 + e

Here, n represents the number of dimensions and x_i \in [-35, 35] for i = 1, ..., n.

Ackley01 function

Two-dimensional Ackley01 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Adorio, E. MVF - “Multivariate Test Functions Library in C for Unconstrained Global Optimization”, 2005

Todo

the -0.2 factor in the exponent of the first term is given as -0.02 in Jamil et al.


class Ackley02(dimensions=2)

Ackley02 objective function.

The Ackley02 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Ackley02}}(x) = -200 e^{-0.02 \sqrt{x_1^2 + x_2^2}}

with x_i \in [-32, 32] for i=1, 2.

Ackley02 function

Two-dimensional Ackley02 function


Global optimum: f(x) = -200 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Ackley03(dimensions=2)

Ackley03 objective function.

The Ackley03 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Ackley03}}(x) = -200 e^{-0.02 \sqrt{x_1^2 + x_2^2}} + 5e^{\cos(3x_1) + \sin(3x_2)}

with x_i \in [-32, 32] for i=1, 2.

Ackley03 function

Two-dimensional Ackley03 function


Global optimum: f(x) = -195.62902825923879 for x = [-0.68255758, -0.36070859]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

I think the minus sign is missing in front of the first term in eqn3 in Jamil. This changes the global minimum


class Ackley04(dimensions=2)

Ackley04 objective function.

Ackley04 function

Two-dimensional Ackley04 function



class Adjiman(dimensions=2)

Adjiman objective function.

The Adjiman global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Adjiman}}(x) = \cos(x_1)\sin(x_2) - \frac{x_1}{(x_2^2 + 1)}

with, x_1\in [-1, 2] and x_2\in [-1, 1].

Adjiman function

Two-dimensional Adjiman function


Global optimum: f(x) = -2.02181 for x = [2.0, 0.10578]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Alpine01(dimensions=2)

Alpine01 objective function.

The Alpine01 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Alpine01}}(x) = \sum_{i=1}^{n} \lvert {x_i \sin \left( x_i \right) + 0.1 x_i} \rvert

Here, n represents the number of dimensions and x_i \in
[-10, 10] for i = 1, ..., n.

Alpine01 function

Two-dimensional Alpine01 function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Alpine02(dimensions=2)

Alpine02 objective function.

The Alpine02 global optimization problem is a multimodal minimization problem defined as follows:

f_{\text{Alpine02}}(x) = \prod_{i=1}^{n} \sqrt{x_i} \sin(x_i)

Here, n represents the number of dimensions and x_i \in [0,
10] for i = 1, ..., n.

Alpine02 function

Two-dimensional Alpine02 function


Global optimum: f(x) = -6.12950389 for x =
[7.91705268, 4.81584232] for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

eqn 7 in has the wrong global minimum value.


class AMGM(dimensions=2)

AMGM objective function.

The AMGM (Arithmetic Mean - Geometric Mean Equality) global optimization problem is a multimodal minimization problem defined as follows

f_{\text{AMGM}}(x) = \left ( \frac{1}{n} \sum_{i=1}^{n} x_i -
 \sqrt[n]{ \prod_{i=1}^{n} x_i} \right )^2

Here, n represents the number of dimensions and x_i \in
[0, 10] for i = 1, ..., n.

AMGM function

Two-dimensional AMGM function


Global optimum: f(x) = 0 for x_1 = x_2 = ... = x_n for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO

Previous topic

SciPy Test Functions Index

Next topic

N-D Test Functions B

This Page