test_functions N-D Test Functions Z

class Zacharov(dimensions=2)

Zacharov objective function.

This class defines the Zacharov global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zacharov}}(x) = \sum_{i=1}^{n} x_i^2 + \left ( \frac{1}{2}
                         \sum_{i=1}^{n} i x_i \right )^2
                         + \left ( \frac{1}{2} \sum_{i=1}^{n} i x_i 
                         \right )^4

Here, n represents the number of dimensions and x_i \in [-5, 10] for i = 1, ..., n.

Zacharov function

Two-dimensional Zacharov function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Zagros(dimensions=2)

Zagros objective function.

Zagros function

Two-dimensional Zagros function



class ZeroSum(dimensions=2)

ZeroSum objective function.

This class defines the ZeroSum global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{ZeroSum}}(x) = \begin{cases}
                        0 & \textrm{if } \sum_{i=1}^n x_i = 0 \\
                        1 + \left(10000 \left |\sum_{i=1}^n x_i\right| \right)^{0.5} & \textrm{otherwise} \\
                        \end{cases}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

ZeroSum function

Two-dimensional ZeroSum function


Global optimum: f(x) = 0 where \sum_{i=1}^n x_i = 0

Gavana, A. Global Optimization Benchmarks and AMPGO


class Zettl(dimensions=2)

Zettl objective function.

This class defines the Zettl global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zettl}}(x) = \frac{1}{4} x_{1} + \left(x_{1}^{2} - 2 x_{1}
                      + x_{2}^{2}\right)^{2}

with x_i \in [-1, 5] for i = 1, 2.

Zettl function

Two-dimensional Zettl function


Global optimum: f(x) = -0.0037912 for x = [-0.029896, 0.0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Zimmerman(dimensions=2)

Zimmerman objective function.

This class defines the Zimmerman global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zimmerman}}(x) = \max \left[Zh1(x), Zp(Zh2(x))
                          \textrm{sgn}(Zh2(x)), Zp(Zh3(x))
                          \textrm{sgn}(Zh3(x)),
                          Zp(-x_1)\textrm{sgn}(x_1),
                          Zp(-x_2)\textrm{sgn}(x_2) \right]

Where, in this exercise:

\begin{cases}
Zh1(x) = 9 - x_1 - x_2 \\
Zh2(x) = (x_1 - 3)^2 + (x_2 - 2)^2 \\
Zh3(x) = x_1x_2 - 14 \\
Zp(t) = 100(1 + t) \\
\end{cases}

Where x is a vector and t is a scalar.

Here, x_i \in [0, 100] for i = 1, 2.

Zimmerman function

Two-dimensional Zimmerman function


Global optimum: f(x) = 0 for x = [7, 2]

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

implementation from Gavana


class Zirilli(dimensions=2)

Zettl objective function.

This class defines the Zirilli global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Zirilli}}(x) = 0.25x_1^4 - 0.5x_1^2 + 0.1x_1 + 0.5x_2^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, 2.

Zirilli function

Two-dimensional Zirilli function


Global optimum: f(x) = -0.3523 for x = [-1.0465, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Previous topic

N-D Test Functions Y

This Page