N-D Test Functions Z¶Zacharov objective function.
This class defines the Zacharov global optimization problem. This is a multimodal minimization problem defined as follows:

Here,
represents the number of dimensions and
for
.
Two-dimensional Zacharov function
Global optimum:
for
for

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Zagros objective function.
Two-dimensional Zagros function
ZeroSum objective function.
This class defines the ZeroSum global optimization problem. This is a multimodal minimization problem defined as follows:

Here,
represents the number of dimensions and
for
.
Two-dimensional ZeroSum function
Global optimum:
where 
Gavana, A. Global Optimization Benchmarks and AMPGO
Zettl objective function.
This class defines the Zettl global optimization problem. This is a multimodal minimization problem defined as follows:

with
for
.
Two-dimensional Zettl function
Global optimum:
for ![x = [-0.029896, 0.0]](_images/math/d60c9a88ad7eef2c99f52196924eb60b759b8ae8.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.
Zimmerman objective function.
This class defines the Zimmerman global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Zimmerman}}(x) = \max \left[Zh1(x), Zp(Zh2(x))
\textrm{sgn}(Zh2(x)), Zp(Zh3(x))
\textrm{sgn}(Zh3(x)),
Zp(-x_1)\textrm{sgn}(x_1),
Zp(-x_2)\textrm{sgn}(x_2) \right]](_images/math/340e5ddf141140bc9d2b39930296769acc97bff1.png)
Where, in this exercise:

Where
is a vector and
is a scalar.
Here,
for
.
Two-dimensional Zimmerman function
Global optimum:
for ![x = [7, 2]](_images/math/bbde432df6172d7c66d9601586f01ac68ab8801c.png)
Gavana, A. Global Optimization Benchmarks and AMPGO
Todo
implementation from Gavana
Zettl objective function.
This class defines the Zirilli global optimization problem. This is a unimodal minimization problem defined as follows:

Here,
represents the number of dimensions and
for
.
Two-dimensional Zirilli function
Global optimum:
for ![x = [-1.0465, 0]](_images/math/256a9115d7e21e3bc0691ef8516a86f66ee028fb.png)
Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.