test_functions N-D Test Functions H

class Hansen(dimensions=2)

Hansen objective function.

This class defines the Hansen global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hansen}}(x) = \left[ \sum_{i=0}^4(i+1)\cos(ix_1+i+1)\right ]
\left[\sum_{j=0}^4(j+1)\cos[(j+2)x_2+j+1])\right ]

with x_i \in [-10, 10] for i = 1, 2.

Hansen function

Two-dimensional Hansen function


Global optimum: f(x) = -176.54179 for x = [-7.58989583, -7.70831466].

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil #61 is missing the starting value of i.


class HappyCat(dimensions=2)

HappyCat objective function.

HappyCat function

Two-dimensional HappyCat function



class Hartmann3(dimensions=3)

Hartmann3 objective function.

This class defines the Hartmann3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hartmann3}}(x) = -\sum\limits_{i=1}^{4} c_i
e^{-\sum\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2}

Where, in this exercise:

\begin{array}{l|ccc|c|ccr}
\hline
i & & a_{ij}&  & c_i & & p_{ij} &  \\
\hline
1 & 3.0 & 10.0 & 30.0 & 1.0 & 0.3689  & 0.1170 & 0.2673 \\
2 & 0.1 & 10.0 & 35.0 & 1.2 & 0.4699 & 0.4387 & 0.7470 \\
3 & 3.0 & 10.0 & 30.0 & 3.0 & 0.1091 & 0.8732 & 0.5547 \\
4 & 0.1 & 10.0 & 35.0 & 3.2 & 0.03815 & 0.5743 & 0.8828 \\
\hline
\end{array}

with x_i \in [0, 1] for i = 1, 2, 3.

Global optimum: f(x) = -3.8627821478 for x = [0.11461292,  0.55564907,  0.85254697]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil #62 has an incorrect coefficient. p[1, 1] should be 0.4387


class Hartmann6(dimensions=6)

Hartmann6 objective function.

This class defines the Hartmann6 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hartmann6}}(x) = -\sum\limits_{i=1}^{4} c_i
e^{-\sum\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2}

Where, in this exercise:

\begin{array}{l|cccccc|r}
\hline
i & &   &   a_{ij} &  &  & & c_i  \\
\hline
1 & 10.0  & 3.0  & 17.0 & 3.50  & 1.70  & 8.00  & 1.0 \\
2 & 0.05  & 10.0 & 17.0 & 0.10  & 8.00  & 14.00 & 1.2 \\
3 & 3.00  & 3.50 & 1.70 & 10.0  & 17.00 & 8.00  & 3.0 \\
4 & 17.00 & 8.00 & 0.05 & 10.00 & 0.10  & 14.00 & 3.2 \\
\hline
\end{array}

\newline
\
\newline

\begin{array}{l|cccccr}
\hline
i &  &   & p_{ij} &  & & \\
\hline
1 & 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\
2 & 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\
3 & 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\
4 & 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \\
\hline
\end{array}

with x_i \in [0, 1] for i = 1, ..., 6.

Global optimum: f(x_i) = -3.32236801141551 for {x} = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162,
0.65730054]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class HelicalValley(dimensions=3)

HelicalValley objective function.

This class defines the HelicalValley global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HelicalValley}}({x}) = 100{[z-10\Psi(x_1,x_2)]^2
+(\sqrt{x_1^2+x_2^2}-1)^2}+x_3^2

Where, in this exercise:

2\pi\Psi(x,y) =  \begin{cases} \arctan(y/x) & \textrm{for } x > 0 \\
\pi + \arctan(y/x) & \textrm{for } x < 0 \end{cases}

with x_i \in [-100, 100] for i = 1, 2, 3.

Global optimum: f(x) = 0 for x = [1, 0, 0]

Fletcher, R. & Powell, M. A Rapidly Convergent Descent Method for Minimzation, Computer Journal, 1963, 62, 163-168

Todo

Jamil equation is different to original reference. The above paper can be obtained from http://galton.uchicago.edu/~lekheng/courses/302/classics/fletcher-powell.pdf


class HimmelBlau(dimensions=2)

HimmelBlau objective function.

This class defines the HimmelBlau global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HimmelBlau}}({x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2

with x_i \in [-6, 6] for i = 1, 2.

HimmelBlau function

Two-dimensional HimmelBlau function


Global optimum: f(x) = 0 for x = [3, 2]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class HolderTable01(dimensions=2)

HolderTable objective function.

This class defines the HolderTable global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HolderTable}}({x}) = - \left|{e^{\left|{1
- \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi} }\right|}
\sin\left(x_{1}\right) \cos\left(x_{2}\right)}\right|

with x_i \in [-10, 10] for i = 1, 2.

HolderTable01 function

Two-dimensional HolderTable01 function


Global optimum: f(x) = -19.20850256788675 for x_i = \pm 9.664590028909654 for i = 1, 2

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Jamil #146 equation is wrong - should be squaring the x1 and x2 terms, but isn’t. Gavana does.


class HolderTable02(dimensions=2)

HolderTable objective function.

HolderTable02 function

Two-dimensional HolderTable02 function



class Hosaki(dimensions=2)

Hosaki objective function.

This class defines the Hosaki global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hosaki}}(x) = \left ( 1 - 8 x_1 + 7 x_1^2 - \frac{7}{3} x_1^3
+ \frac{1}{4} x_1^4 \right ) x_2^2 e^{-x_1}

with x_i \in [0, 10] for i = 1, 2.

Hosaki function

Two-dimensional Hosaki function


Global optimum: f(x) = -2.3458115 for x = [4, 2].

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Hougen(dimensions=5)

Hougen objective function.


class HyperGrid(dimensions=2)

HyperGrid objective function.

HyperGrid function

Two-dimensional HyperGrid function


Previous topic

N-D Test Functions G

Next topic

N-D Test Functions I

This Page