test_functions N-D Test Functions G

class Gear(dimensions=4)

Gear objective function.

This class defines the Gear global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Gear}}({x}) = \left \{ \frac{1.0}{6.931}
- \frac{\lfloor x_1\rfloor \lfloor x_2 \rfloor }
{\lfloor x_3 \rfloor \lfloor x_4 \rfloor } \right\}^2

with x_i \in [12, 60] for i = 1, ..., 4.

Global optimum: f(x) = 2.7 \cdot 10^{-12} for x =
[16, 19, 43, 49], where the various x_i may be permuted.

Gavana, A. Global Optimization Benchmarks and AMPGO


class Giunta(dimensions=2)

Giunta objective function.

This class defines the Giunta global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Giunta}}({x}) = 0.6 + \sum_{i=1}^{n} \left[\sin^{2}\left(1
- \frac{16}{15} x_i\right) - \frac{1}{50} \sin\left(4
- \frac{64}{15} x_i\right) - \sin\left(1
- \frac{16}{15} x_i\right)\right]

with x_i \in [-1, 1] for i = 1, 2.

Giunta function

Two-dimensional Giunta function


Global optimum: f(x) = 0.06447042053690566 for x = [0.4673200277395354, 0.4673200169591304]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil has the wrong fglob. I think there is a lower value.


class GoldsteinPrice(dimensions=2)

Goldstein-Price objective function.

This class defines the Goldstein-Price global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{GoldsteinPrice}}(x) = \left[ 1 + (x_1 + x_2 + 1)^2 
(19 - 14 x_1 + 3 x_1^2 - 14 x_2 + 6 x_1 x_2 + 3 x_2^2) \right]
\left[ 30 + ( 2x_1 - 3 x_2)^2 (18 - 32 x_1 + 12 x_1^2
+ 48 x_2 - 36 x_1 x_2 + 27 x_2^2) \right]

with x_i \in [-2, 2] for i = 1, 2.

GoldsteinPrice function

Two-dimensional GoldsteinPrice function


Global optimum: f(x) = 3 for x = [0, -1]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class GramacyLee02(dimensions=2)

Gramacy Lee objective function No 2.

GramacyLee02 function

Two-dimensional GramacyLee02 function



class GramacyLee03(dimensions=2)

Gramacy Lee objective function No 3.

GramacyLee03 function

Two-dimensional GramacyLee03 function



class Griewank(dimensions=2)

Griewank objective function.

This class defines the Griewank global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Griewank}}(x) = \frac{1}{4000}\sum_{i=1}^n x_i^2
- \prod_{i=1}^n\cos\left(\frac{x_i}{\sqrt{i}}\right) + 1

Here, n represents the number of dimensions and x_i \in [-600, 600] for i = 1, ..., n.

Griewank function

Two-dimensional Griewank function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Gulf(dimensions=3)

Gulf objective function.

This class defines the Gulf global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Gulf}}(x) = \sum_{i=1}^99 \left( e^{-\frac{\lvert y_i
- x_2 \rvert^{x_3}}{x_1}}  - t_i \right)

Where, in this exercise:

t_i = i/100 \
y_i = 25 + [-50 \log(t_i)]^{2/3}

with x_i \in [0, 60] for i = 1, 2, 3.

Global optimum: f(x) = 0 for x = [50, 25, 1.5]

Gavana, A. Global Optimization Benchmarks and AMPGO

Todo

Gavana has absolute of (u - x[1]) term. Jamil doesn’t... Leaving it in.

Previous topic

N-D Test Functions F

Next topic

N-D Test Functions H

This Page