test_functions N-D Test Functions E

class Easom(dimensions=2)

Easom objective function.

This class defines the Easom global optimization problem. This is a a multimodal minimization problem defined as follows:

f_{\text{Easom}}({x}) = a - \frac{a}{e^{b \sqrt{\frac{\sum_{i=1}^{n}
x_i^{2}}{n}}}} + e - e^{\frac{\sum_{i=1}^{n} \cos\left(c x_i\right)}
{n}}

Where, in this exercise, a = 20, b = 0.2 and c = 2 \pi.

Here, x_i \in [-100, 100] for i = 1, 2.

Easom function

Two-dimensional Easom function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Eckerle4(dimensions=3)

Eckerle4 objective function. Eckerle, K., NIST (1979). Circular Interference Transmittance Study.

http://www.itl.nist.gov/div898/strd/nls/data/eckerle4.shtml


class EggCrate(dimensions=2)

Egg Crate objective function.

This class defines the Egg Crate global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{EggCrate}}(x) = x_1^2 + x_2^2 + 25 \left[ \sin^2(x_1)
+ \sin^2(x_2) \right]

with x_i \in [-5, 5] for i = 1, 2.

EggCrate function

Two-dimensional EggCrate function


Global optimum: f(x) = 0 for x = [0, 0]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class EggHolder(dimensions=2)

Egg Holder objective function.

This class defines the Egg Holder global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{EggHolder}}=\sum_{1}^{n - 1}\left[-\left(x_{i + 1}
+ 47 \right ) \sin\sqrt{\lvert x_{i+1} + x_i/2 + 47 \rvert}
- x_i \sin\sqrt{\lvert x_i - (x_{i + 1} + 47)\rvert}\right ]

Here, n represents the number of dimensions and x_i \in
[-512, 512] for i = 1, ..., n.

EggHolder function

Two-dimensional EggHolder function


Global optimum: f(x) = -959.640662711 for {x} = [512, 404.2319]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil is missing a minus sign on the fglob value


class ElAttarVidyasagarDutta(dimensions=2)

El-Attar-Vidyasagar-Dutta objective function.

This class defines the El-Attar-Vidyasagar-Dutta function global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{ElAttarVidyasagarDutta}}(x) = (x_1^2 + x_2 - 10)^2
+ (x_1 + x_2^2 - 7)^2 + (x_1^2 + x_2^3 - 1)^2

with x_i \in [-100, 100] for i = 1, 2.

ElAttarVidyasagarDutta function

Two-dimensional ElAttarVidyasagarDutta function


Global optimum: f(x) = 1.712780354 for x= [3.40918683, -2.17143304]

Gavana, A. Global Optimization Benchmarks and AMPGO


class Engvall(dimensions=2)

Engvall objective function.

Engvall function

Two-dimensional Engvall function



class Exp2(dimensions=2)

Exp2 objective function.

This class defines the Exp2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Exp2}}(x) = \sum_{i=0}^9 \left ( e^{-ix_1/10} - 5e^{-ix_2/10}
- e^{-i/10} + 5e^{-i} \right )^2

with x_i \in [0, 20] for i = 1, 2.

Exp2 function

Two-dimensional Exp2 function


Global optimum: f(x) = 0 for x = [1, 10.]

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Exponential(dimensions=2)

Exponential [1] objective function.

This class defines the Exponential global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Exponential}}(x) = -e^{-0.5 \sum_{i=1}^n x_i^2}

Here, n represents the number of dimensions and x_i \in
[-1, 1] for i = 1, ..., n.

Exponential function

Two-dimensional Exponential function


Global optimum: f(x_i) = -1 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

Jamil are missing a minus sign on fglob

Previous topic

N-D Test Functions D

Next topic

N-D Test Functions F

This Page