test_functions N-D Test Functions P

class Parsopoulos(dimensions=2)

Parsopoulos objective function.

This class defines the Parsopoulos global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Parsopoulos}}(x) = \cos(x_1)^2 + \sin(x_2)^2

with x_i \in [-5, 5] for i = 1, 2.

Parsopoulos function

Two-dimensional Parsopoulos function


Global optimum: This function has infinite number of global minima in R2, at points \left(k\frac{\pi}{2}, \lambda \pi \right), where k = \pm1, \pm3, ... and \lambda = 0, \pm1, \pm2, ...

In the given domain problem, function has 12 global minima all equal to zero.

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Pathological(dimensions=2)

Pathological objective function.

This class defines the Pathological global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Pathological}}(x) = \sum_{i=1}^{n -1} \frac{\sin^{2}\left(
\sqrt{100 x_{i+1}^{2} + x_{i}^{2}}\right) -0.5}{0.001 \left(x_{i}^{2}
- 2x_{i}x_{i+1} + x_{i+1}^{2}\right)^{2} + 0.50}

Here, n represents the number of dimensions and x_i \in [-100, 100] for i = 1, 2.

Pathological function

Two-dimensional Pathological function


Global optimum: f(x) = 0. for x = [0, 0] for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Paviani(dimensions=10)

Paviani objective function.

This class defines the Paviani global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Paviani}}(x) = \sum_{i=1}^{10} \left[\log^{2}\left(10
- x_i\right) + \log^{2}\left(x_i -2\right)\right]
- \left(\prod_{i=1}^{10} x_i^{10} \right)^{0.2}

with x_i \in [2.001, 9.999] for i = 1, ... , 10.

Global optimum: f(x_i) = -45.7784684040686 for x_i = 9.350266 for i = 1, ..., 10

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.

Todo

think Gavana web/code definition is wrong because final product term shouldn’t raise x to power 10.


class Peaks(dimensions=2)

Peaks objective function.

Peaks function

Two-dimensional Peaks function



class Penalty01(dimensions=2)

Penalty 1 objective function.

This class defines the Penalty 1 global optimization problem. This is a imultimodal minimization problem defined as follows:

f_{\text{Penalty01}}(x) = \frac{\pi}{30} \left\{10 \sin^2(\pi y_1)
+ \sum_{i=1}^{n-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right]
+ (y_n - 1)^2 \right \} + \sum_{i=1}^n u(x_i, 10, 100, 4)

Where, in this exercise:

y_i = 1 + \frac{1}{4}(x_i + 1)

And:

u(x_i, a, k, m) = \begin{cases}
k(x_i - a)^m & \textrm{if} \hspace{5pt} x_i > a \\
0 & \textrm{if} \hspace{5pt} -a \leq x_i \leq a \\
k(-x_i - a)^m & \textrm{if} \hspace{5pt} x_i < -a \\
\end{cases}

Here, n represents the number of dimensions and x_i \in [-50, 50] for i= 1, ..., n.

Penalty01 function

Two-dimensional Penalty01 function


Global optimum: f(x) = 0 for x_i = -1 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Penalty02(dimensions=2)

Penalty 2 objective function.

This class defines the Penalty 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Penalty02}}(x) = 0.1 \left\{\sin^2(3\pi x_1) + \sum_{i=1}^{n-1}
(x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right ]
+ (x_n - 1)^2 \left [1 + \sin^2(2 \pi x_n) \right ]\right \}
+ \sum_{i=1}^n u(x_i, 5, 100, 4)

Where, in this exercise:

u(x_i, a, k, m) = \begin{cases}
k(x_i - a)^m & \textrm{if} \hspace{5pt} x_i > a \\
0 & \textrm{if} \hspace{5pt} -a \leq x_i \leq a \\
k(-x_i - a)^m & \textrm{if} \hspace{5pt} x_i < -a \\
\end{cases}

Here, n represents the number of dimensions and x_i \in [-50, 50] for i = 1, ..., n.

Penalty02 function

Two-dimensional Penalty02 function


Global optimum: f(x) = 0 for x_i = 1 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class PenHolder(dimensions=2)

PenHolder objective function.

This class defines the PenHolder global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{PenHolder}}(x) = -e^{\left|{e^{-\left|{- \frac{\sqrt{x_{1}^{2}
+ x_{2}^{2}}}{\pi} + 1}\right|} \cos\left(x_{1}\right)
\cos\left(x_{2}\right)}\right|^{-1}}

with x_i \in [-11, 11] for i = 1, 2.

PenHolder function

Two-dimensional PenHolder function


Global optimum: f(x_i) = -0.9635348327265058 for x_i = \pm 9.646167671043401 for i = 1, 2

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class PermFunction01(dimensions=2)

PermFunction 1 objective function.

This class defines the PermFunction1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{PermFunction01}}(x) = \sum_{k=1}^n \left\{ \sum_{j=1}^n (j^k
+ \beta) \left[ \left(\frac{x_j}{j}\right)^k - 1 \right] \right\}^2

Here, n represents the number of dimensions and x_i \in [-n, n + 1] for i = 1, ..., n.

PermFunction01 function

Two-dimensional PermFunction01 function


Global optimum: f(x) = 0 for x_i = i for i = 1, ..., n

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

line 560


class PermFunction02(dimensions=2)

PermFunction 2 objective function.

This class defines the Perm Function 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{PermFunction02}}(x) = \sum_{k=1}^n \left\{ \sum_{j=1}^n (j
+ \beta) \left[ \left(x_j^k - {\frac{1}{j}}^{k} \right )
\right] \right\}^2

Here, n represents the number of dimensions and x_i \in [-n, n+1] for i = 1, ..., n.

PermFunction02 function

Two-dimensional PermFunction02 function


Global optimum: f(x) = 0 for x_i = \frac{1}{i} for i = 1, ..., n

Mishra, S. Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions. Munich Personal RePEc Archive, 2006, 1005

Todo

line 582


class Picheny(dimensions=2)

Picheny objective function.

Picheny function

Two-dimensional Picheny function



class Pinter(dimensions=2)

Pinter objective function.

This class defines the Pinter global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Pinter}}(x) = \sum_{i=1}^n ix_i^2 + \sum_{i=1}^n 20i
\sin^2 A + \sum_{i=1}^n i \log_{10} (1 + iB^2)

Where, in this exercise:

\begin{cases}
A = x_{i-1} \sin x_i + \sin x_{i+1} \\
B = x_{i-1}^2 - 2x_i + 3x_{i + 1} - \cos x_i + 1 \\
\end{cases}

Where x_0 = x_n and x_{n + 1} = x_1.

Here, n represents the number of dimensions and x_i \in [-10, 10] for i = 1, ..., n.

Pinter function

Two-dimensional Pinter function


Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., n

Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194.


class Plateau(dimensions=2)

Plateau objective function.

This class defines the Plateau global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Plateau}}(x) = 30 + \sum_{i=1}^n \lfloor \lvert x_i
\rvert\rfloor

Here, n represents the number of dimensions and x_i \in [-5.12, 5.12] for i = 1, ..., n.

Plateau function

Two-dimensional Plateau function


Global optimum: f(x) = 30 for x_i = 0 for i = 1, ..., n

Gavana, A. Global Optimization Benchmarks and AMPGO


class Powell(dimensions=4)

Powell objective function.

This class defines the Powell global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Powell}}(x) = (x_3+10x_1)^2 + 5(x_2-x_4)^2 + (x_1-2x_2)^4
+ 10(x_3-x_4)^4

Here, n represents the number of dimensions and x_i \in [-4, 5] for i = 1, ..., 4.

Global optimum: f(x) = 0 for x_i = 0 for i = 1, ..., 4

Powell, M. An iterative method for finding stationary values of a function of several variables Computer Journal, 1962, 5, 147-151


class PowerSum(dimensions=4)

Power sum objective function.

This class defines the Power Sum global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{PowerSum}}(x) = \sum_{k=1}^n\left[\left(\sum_{i=1}^n x_i^k
\right) - b_k \right]^2

Where, in this exercise, b = [8, 18, 44, 114]

Here, x_i \in [0, 4] for i = 1, ..., 4.

Global optimum: f(x) = 0 for x = [1, 2, 2, 3]

Gavana, A. Global Optimization Benchmarks and AMPGO


class Price01(dimensions=2)

Price 1 objective function.

This class defines the Price 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Price01}}(x) = (\lvert x_1 \rvert - 5)^2
+ (\lvert x_2 \rvert - 5)^2

with x_i \in [-500, 500] for i = 1, 2.

Price01 function

Two-dimensional Price01 function


Global optimum: f(x_i) = 0.0 for x = [5, 5] or x = [5, -5] or x = [-5, 5] or x = [-5, -5].

Price, W. A controlled random search procedure for global optimisation Computer Journal, 1977, 20, 367-370


class Price02(dimensions=2)

Price 2 objective function.

This class defines the Price 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Price02}}(x) = 1 + \sin^2(x_1) + \sin^2(x_2)
- 0.1e^{(-x_1^2 - x_2^2)}

with x_i \in [-10, 10] for i = 1, 2.

Price02 function

Two-dimensional Price02 function


Global optimum: f(x) = 0.9 for x_i = [0, 0]

Price, W. A controlled random search procedure for global optimisation Computer Journal, 1977, 20, 367-370


class Price03(dimensions=2)

Price 3 objective function.

This class defines the Price 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Price03}}(x) = 100(x_2 - x_1^2)^2 + \left[6.4(x_2 - 0.5)^2
- x_1 - 0.6 \right]^2

with x_i \in [-50, 50] for i = 1, 2.

Price03 function

Two-dimensional Price03 function


Global optimum: f(x) = 0 for x = [-5, -5], x = [-5, 5], x = [5, -5], x = [5, 5].

Price, W. A controlled random search procedure for global optimisation Computer Journal, 1977, 20, 367-370

Todo

Jamil #96 has an erroneous factor of 6 in front of the square brackets


class Price04(dimensions=2)

Price 4 objective function.

This class defines the Price 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Price04}}(x) = (2 x_1^3 x_2 - x_2^3)^2
+ (6 x_1 - x_2^2 + x_2)^2

with x_i \in [-50, 50] for i = 1, 2.

Price04 function

Two-dimensional Price04 function


Global optimum: f(x) = 0 for x = [0, 0], x = [2, 4] and x = [1.464, -2.506]

Price, W. A controlled random search procedure for global optimisation Computer Journal, 1977, 20, 367-370

Previous topic

N-D Test Functions O

Next topic

N-D Test Functions Q

This Page