test_functions N-D Test Functions Z

class go_benchmark.Zacharov(dimensions=2)

Zacharov test objective function.

This class defines the Zacharov global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zacharov}}(\mathbf{x}) = \sum_{i=1}^{n} x_i^2 + \left ( \frac{1}{2} \sum_{i=1}^{n} i x_i \right )^2 + \left ( \frac{1}{2} \sum_{i=1}^{n} i x_i \right )^4

Here, n represents the number of dimensions and x_i \in [-5, 10] for i=1,...,n.

Zacharov function

Two-dimensional Zacharov function

Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,n


class go_benchmark.ZeroSum(dimensions=2)

ZeroSum test objective function.

This class defines the ZeroSum global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{ZeroSum}}(\mathbf{x}) = \begin{cases}0 & \textrm{if} \sum_{i=1}^n x_i = 0 \\
       1 + \left(10000 \left |\sum_{i=1}^n x_i\right| \right)^{0.5} & \textrm{otherwise}\end{cases}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,n.

ZeroSum function

Two-dimensional ZeroSum function

Global optimum: f(x_i) = 0 where \sum_{i=1}^n x_i = 0


class go_benchmark.Zettl(dimensions=2)

Zettl test objective function.

This class defines the Zettl global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zettl}}(\mathbf{x}) = \frac{1}{4} x_{1} + \left(x_{1}^{2} - 2 x_{1} + x_{2}^{2}\right)^{2}

Here, n represents the number of dimensions and x_i \in [-1, 5] for i=1,2.

Zettl function

Two-dimensional Zettl function

Global optimum: f(x_i) = -0.0037912 for \mathbf{x} = [-0.029896, 0.0]


class go_benchmark.Zimmerman(dimensions=2)

Zimmerman test objective function.

This class defines the Zimmerman global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Zimmerman}}(\mathbf{x}) = \max \left[Zh1(x), Zp(Zh2(x))\textrm{sgn}(Zh2(x)), Zp(Zh3(x)) \textrm{sgn}(Zh3(x)), Zp(-x_1)\textrm{sgn}(x_1), Zp(-x_2)\textrm{sgn}(x_2) \right]

Where, in this exercise:

\begin{cases} Zh1(x) = 9 - x_1 - x_2 \\
Zh2(x) = (x_1 - 3)^2 + (x_2 - 2)^2 \\
Zh3(x) = x_1x_2 - 14 \\
Zp(t) = 100(1 + t) \end{cases}

Where x is a vector and t is a scalar.

Here, n represents the number of dimensions and x_i \in [0, 100] for i=1,2.

Zimmerman function

Two-dimensional Zimmerman function

Global optimum: f(x_i) = 0 for \mathbf{x} = [7, 2]


class go_benchmark.Zirilli(dimensions=2)

Zettl test objective function.

This class defines the Zirilli global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Zirilli}}(\mathbf{x}) = 0.25x_1^4 - 0.5x_1^2 + 0.1x_1 + 0.5x_2^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

Zirilli function

Two-dimensional Zirilli function

Global optimum: f(x_i) = -0.3523 for \mathbf{x} = [-1.0465, 0]

Previous topic

N-D Test Functions Y

Next topic

1-D Test Functions

This Page