test_functions 1-D Test Functions

class go_benchmark.Problem02(dimensions=1)

Univariate Problem02 test objective function.

This class defines the Univariate Problem02 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem02}}(x) = \sin(x) + \sin \left(\frac{10}{3}x \right)

Bound constraints: x \in [2.7, 7.5]

Univariate Problem02 function

Univariate Problem02 function

Global optimum: f(x)=-1.899599 for x = 5.145735


class go_benchmark.Problem03(dimensions=1)

Univariate Problem03 test objective function.

This class defines the Univariate Problem03 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem03}}(x) = - \sum_{k=1}^6 k \sin[(k+1)x+k]

Bound constraints: x \in [-10, 10]

Univariate Problem03 function

Univariate Problem03 function

Global optimum: f(x)=-12.03124 for x = -6.7745761


class go_benchmark.Problem04(dimensions=1)

Univariate Problem04 test objective function.

This class defines the Univariate Problem04 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem04}}(x) = - \left(16x^2 - 24x + 5 \right) e^{-x}

Bound constraints: x \in [1.9, 3.9]

Univariate Problem04 function

Univariate Problem04 function

Global optimum: f(x)=-3.85045 for x = 2.868034


class go_benchmark.Problem05(dimensions=1)

Univariate Problem05 test objective function.

This class defines the Univariate Problem05 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem05}}(x) = - \left(1.4 - 3x \right) \sin(18x)

Bound constraints: x \in [0, 1.2]

Univariate Problem05 function

Univariate Problem05 function

Global optimum: f(x)=-1.48907 for x = 0.96609


class go_benchmark.Problem06(dimensions=1)

Univariate Problem06 test objective function.

This class defines the Univariate Problem06 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem06}}(x) = - \left[x + \sin(x) \right] e^{-x^2}

Bound constraints: x \in [-10, 10]

Univariate Problem06 function

Univariate Problem06 function

Global optimum: f(x)=-0.824239 for x = 0.67956


class go_benchmark.Problem07(dimensions=1)

Univariate Problem07 test objective function.

This class defines the Univariate Problem07 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem07}}(x) = \sin(x) + \sin \left(\frac{10}{3}x \right) + \log(x) - 0.84x + 3

Bound constraints: x \in [2.7, 7.5]

Univariate Problem07 function

Univariate Problem07 function

Global optimum: f(x)=-1.6013 for x = 5.19978


class go_benchmark.Problem08(dimensions=1)

Univariate Problem08 test objective function.

This class defines the Univariate Problem08 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem08}}(x) = - \sum_{k=1}^6 k \cos[(k+1)x+k]

Bound constraints: x \in [-10, 10]

Univariate Problem08 function

Univariate Problem08 function

Global optimum: f(x)=-14.508 for x = -7.083506


class go_benchmark.Problem09(dimensions=1)

Univariate Problem09 test objective function.

This class defines the Univariate Problem09 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem09}}(x) = \sin(x) + \sin \left(\frac{2}{3} x \right)

Bound constraints: x \in [3.1, 20.4]

Univariate Problem09 function

Univariate Problem09 function

Global optimum: f(x)=-1.90596 for x = 17.039


class go_benchmark.Problem10(dimensions=1)

Univariate Problem10 test objective function.

This class defines the Univariate Problem10 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem10}}(x) = -x\sin(x)

Bound constraints: x \in [0, 10]

Univariate Problem10 function

Univariate Problem10 function

Global optimum: f(x)=-7.916727 for x = 7.9787


class go_benchmark.Problem11(dimensions=1)

Univariate Problem11 test objective function.

This class defines the Univariate Problem11 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem11}}(x) = 2\cos(x) + \cos(2x)

Bound constraints: x \in [-\pi/2, 2\pi]

Univariate Problem11 function

Univariate Problem11 function

Global optimum: f(x)=-1.5 for x = 2.09439


class go_benchmark.Problem12(dimensions=1)

Univariate Problem12 test objective function.

This class defines the Univariate Problem12 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem12}}(x) = \sin^3(x) + \cos^3(x)

Bound constraints: x \in [0, 2\pi]

Univariate Problem12 function

Univariate Problem12 function

Global optimum: f(x)=-1 for x = \pi


class go_benchmark.Problem13(dimensions=1)

Univariate Problem13 test objective function.

This class defines the Univariate Problem13 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem13}}(x) = -x^{2/3} - (1 - x^2)^{1/3}

Bound constraints: x \in [0.001, 0.99]

Univariate Problem13 function

Univariate Problem13 function

Global optimum: f(x)=-1.5874 for x = 1/\sqrt(2)


class go_benchmark.Problem14(dimensions=1)

Univariate Problem14 test objective function.

This class defines the Univariate Problem14 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem14}}(x) = -e^{-x} \sin(2\pi x)

Bound constraints: x \in [0, 4]

Univariate Problem14 function

Univariate Problem14 function

Global optimum: f(x)=-0.788685 for x = 0.224885


class go_benchmark.Problem15(dimensions=1)

Univariate Problem15 test objective function.

This class defines the Univariate Problem15 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem15}}(x) = \frac{x^{2} - 5 x + 6}{x^{2} + 1}

Bound constraints: x \in [-5, 5]

Univariate Problem15 function

Univariate Problem15 function

Global optimum: f(x)=-0.03553 for x = 2.41422


class go_benchmark.Problem18(dimensions=1)

Univariate Problem18 test objective function.

This class defines the Univariate Problem18 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem18}}(x) = \begin{cases}(x-2)^2 & \textrm{if} \hspace{5pt} x \leq 3 \\
                                         2\log(x-2)+1&\textrm{otherwise}\end{cases}

Bound constraints: x \in [0, 6]

Univariate Problem18 function

Univariate Problem18 function

Global optimum: f(x)=0 for x = 2


class go_benchmark.Problem20(dimensions=1)

Univariate Problem20 test objective function.

This class defines the Univariate Problem20 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem20}}(x) = -[x-\sin(x)]e^{-x^2}

Bound constraints: x \in [-10, 10]

Univariate Problem20 function

Univariate Problem20 function

Global optimum: f(x)=-0.0634905 for x = 1.195137


class go_benchmark.Problem21(dimensions=1)

Univariate Problem21 test objective function.

This class defines the Univariate Problem21 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem21}}(x) = x \sin(x) + x \cos(2x)

Bound constraints: x \in [0, 10]

Univariate Problem21 function

Univariate Problem21 function

Global optimum: f(x)=-9.50835 for x = 4.79507


class go_benchmark.Problem22(dimensions=1)

Univariate Problem22 test objective function.

This class defines the Univariate Problem22 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Problem22}}(x) = e^{-3x} - \sin^3(x)

Bound constraints: x \in [0, 20]

Univariate Problem22 function

Univariate Problem22 function

Global optimum: f(x)=e^{-27\pi/2} - 1 for x = 9\pi/2

Previous topic

N-D Test Functions Z

This Page