N-D Test Functions X¶Xin-She Yang 1 test objective function.
This class defines the Xin-She Yang 1 global optimization problem. This is a multimodal minimization problem defined as follows:

The variable
is a random variable uniformly distributed in
.
Here,
represents the number of dimensions and
for
.
Two-dimensional Xin-She Yang 1 function
Global optimum:
for
for 
Xin-She Yang 2 test objective function.
This class defines the Xin-She Yang 2 global optimization problem. This is a multimodal minimization problem defined as follows:

Here,
represents the number of dimensions and
for
.
Two-dimensional Xin-She Yang 2 function
Global optimum:
for
for 
Xin-She Yang 3 test objective function.
This class defines the Xin-She Yang 3 global optimization problem. This is a multimodal minimization problem defined as follows:

Where, in this exercise,
and
.
Here,
represents the number of dimensions and
for
.
Two-dimensional Xin-She Yang 3 function
Global optimum:
for
for 
Xin-She Yang 4 test objective function.
This class defines the Xin-She Yang 4 global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{XinSheYang04}}(\mathbf{x}) = \left[ \sum_{i=1}^{n} \sin^2(x_i) - e^{-\sum_{i=1}^{n} x_i^2} \right ] e^{-\sum_{i=1}^{n} \sin^2 \sqrt{ \lvert x_i \rvert }}](_images/math/d385e33d9d3675ed690b61157e42afaaebe9c30e.png)
Here,
represents the number of dimensions and
for
.
Two-dimensional Xin-She Yang 4 function
Global optimum:
for
for 
Xor test objective function.
This class defines the Xor global optimization problem. This is a multimodal minimization problem defined as follows:
![f_{\text{Xor}}(\mathbf{x}) = \left[ 1 + \exp \left( - \frac{x_7}{1 + \exp(-x_1 - x_2 - x_5)} - \frac{x_8}{1 + \exp(-x_3 - x_4 - x_6)} - x_9 \right ) \right ]^{-2} \\
+ \left [ 1 + \exp \left( -\frac{x_7}{1 + \exp(-x_5)} - \frac{x_8}{1 + \exp(-x_6)} - x_9 \right ) \right] ^{-2} \\
+ \left [1 - \left\{1 + \exp \left(-\frac{x_7}{1 + \exp(-x_1 - x_5)} - \frac{x_8}{1 + \exp(-x_3 - x_6)} - x_9 \right ) \right\}^{-1} \right ]^2 \\
+ \left [1 - \left\{1 + \exp \left(-\frac{x_7}{1 + \exp(-x_2 - x_5)} - \frac{x_8}{1 + \exp(-x_4 - x_6)} - x_9 \right ) \right\}^{-1} \right ]^2](_images/math/879799c74892110b6eb0ea520c7572c4ad7c4f33.png)
Here,
represents the number of dimensions and
for
.
Global optimum:
for ![\mathbf{x} = [1, -1, 1, -1, -1, 1, 1, -1, 0.421134]](_images/math/fb03fa96628e4c5633f6527b9625fec9246a7088.png)