test_functions N-D Test Functions X

class go_benchmark.XinSheYang01(dimensions=2)

Xin-She Yang 1 test objective function.

This class defines the Xin-She Yang 1 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{XinSheYang01}}(\mathbf{x}) = \sum_{i=1}^{n} \epsilon_i \lvert x_i \rvert^i

The variable \epsilon_i, (i=1,...,n) is a random variable uniformly distributed in [0, 1].

Here, n represents the number of dimensions and x_i \in [-5, 5] for i=1,...,n.

Xin-She Yang 1 function

Two-dimensional Xin-She Yang 1 function

Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,n


class go_benchmark.XinSheYang02(dimensions=2)

Xin-She Yang 2 test objective function.

This class defines the Xin-She Yang 2 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{XinSheYang02}}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \lvert{x_{i}}\rvert}{e^{\sum_{i=1}^{n} \sin\left(x_{i}^{2.0}\right)}}

Here, n represents the number of dimensions and x_i \in [-2\pi, 2\pi] for i=1,...,n.

Xin-She Yang 2 function

Two-dimensional Xin-She Yang 2 function

Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,n


class go_benchmark.XinSheYang03(dimensions=2)

Xin-She Yang 3 test objective function.

This class defines the Xin-She Yang 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{XinSheYang03}}(\mathbf{x}) = e^{-\sum_{i=1}^{n} (x_i/\beta)^{2m}} - 2e^{-\sum_{i=1}^{n} x_i^2} \prod_{i=1}^{n} \cos^2(x_i)

Where, in this exercise, \beta = 15 and m = 3.

Here, n represents the number of dimensions and x_i \in [-20, 20] for i=1,...,n.

Xin-She Yang 3 function

Two-dimensional Xin-She Yang 3 function

Global optimum: f(x_i) = -1 for x_i = 0 for i=1,...,n


class go_benchmark.XinSheYang04(dimensions=2)

Xin-She Yang 4 test objective function.

This class defines the Xin-She Yang 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{XinSheYang04}}(\mathbf{x}) = \left[ \sum_{i=1}^{n} \sin^2(x_i) - e^{-\sum_{i=1}^{n} x_i^2} \right ] e^{-\sum_{i=1}^{n} \sin^2 \sqrt{ \lvert x_i \rvert }}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,n.

Xin-She Yang 4 function

Two-dimensional Xin-She Yang 4 function

Global optimum: f(x_i) = -1 for x_i = 0 for i=1,...,n


class go_benchmark.Xor(dimensions=9)

Xor test objective function.

This class defines the Xor global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Xor}}(\mathbf{x}) = \left[ 1 + \exp \left( - \frac{x_7}{1 + \exp(-x_1 - x_2 - x_5)} - \frac{x_8}{1 + \exp(-x_3 - x_4 - x_6)} - x_9 \right ) \right ]^{-2} \\
+ \left [ 1 + \exp \left( -\frac{x_7}{1 + \exp(-x_5)} - \frac{x_8}{1 + \exp(-x_6)} - x_9 \right ) \right] ^{-2} \\
+ \left [1 - \left\{1 + \exp \left(-\frac{x_7}{1 + \exp(-x_1 - x_5)} - \frac{x_8}{1 + \exp(-x_3 - x_6)} - x_9 \right ) \right\}^{-1} \right ]^2 \\
+ \left [1 - \left\{1 + \exp \left(-\frac{x_7}{1 + \exp(-x_2 - x_5)} - \frac{x_8}{1 + \exp(-x_4 - x_6)} - x_9 \right ) \right\}^{-1} \right ]^2

Here, n represents the number of dimensions and x_i \in [-1, 1] for i=1,...,9.

Global optimum: f(x_i) = 0.9597588 for \mathbf{x} = [1, -1, 1, -1, -1, 1, 1, -1, 0.421134]

Previous topic

N-D Test Functions W

Next topic

N-D Test Functions Y

This Page