test_functions N-D Test Functions Q

class go_benchmark.Qing(dimensions=2)

Qing test objective function.

This class defines the Qing global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Qing}}(\mathbf{x}) = \sum_{i=1}^{n} (x_i^2 - i)^2

Here, n represents the number of dimensions and x_i \in [-500, 500] for i=1,...,n.

Qing function

Two-dimensional Qing function

Global optimum: f(x_i) = 0 for x_i = \pm \sqrt(i) for i=1,...,n


class go_benchmark.Quadratic(dimensions=2)

Quadratic test objective function.

This class defines the Quadratic global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Quadratic}}(\mathbf{x}) = -3803.84 - 138.08x_1 - 232.92x_2 + 128.08x_1^2 + 203.64x_2^2 + 182.25x_1x_2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

Quadratic function

Two-dimensional Quadratic function

Global optimum: f(x_i) = -3873.72418 for \mathbf{x} = [0.19388, 0.48513]


class go_benchmark.Quintic(dimensions=2)

Quintic test objective function.

This class defines the Quintic global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Quintic}}(\mathbf{x}) = \sum_{i=1}^{n} \left|{x_{i}^{5} - 3 x_{i}^{4} + 4 x_{i}^{3} + 2 x_{i}^{2} - 10 x_{i} -4}\right|

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,n.

Quintic function

Two-dimensional Quintic function

Global optimum: f(x_i) = 0 for x_i = -1 for i=1,...,n

Previous topic

N-D Test Functions P

Next topic

N-D Test Functions R

This Page