Multidimensional Benchmarks Results

This page shows the results obtained by applying a number of Global optimization algorithms to the entire benchmark suite of N-D optimization problems, together with some statistics on the algorithm performances.

test_functions Multi-Dimensional (N-D) Test Functions

The following table shows the overall success of all Global Optimization algorithms, considering for every benchmark function 100 random starting points.

So, for example, AMPGO was able to solve, on average, 79.0% of all the test functions for all the 100 random starting points using, on average, 611 functions evaluations.

Optimization algorithms performances (N-dimensional)
Optimization Method Overall Success (%) Functions Evaluations
AMPGO 79.027 611
ASA 58.457 3566
BasinHopping 49.478 1220
CMA-ES 57.038 603
CRS2 57.315 963
DE 25.533 1429
DIRECT 55.027 563
Firefly 53.565 1462
Galileo 4.978 125
MLSL 20.082 3096
PSWARM 52.815 1163
SCE 68.005 970
SIMANN 6.446 1390

These results are also depicted in the next figure, which clearly shows that AMPGO is the better-performing optimization algorithms as far as the current benchmark is considered.

AMPGO N-D results

AMPGO Optimization algorithms performances (N-dimensional)


It is also interesting to analyze the success of an optimization algorithm based on the fraction (or percentage) of problems solved given a fixed number of allowed function evaluations, let’s say from 100 to 2000. The next figure presents such analysis, and it is clear that, on average, AMPGO outperforms all the other optimization methods using only 200 function evaluations (against the 2000 allowed for all the others).

AMPGO N-D results

AMPGO Percentage of problems solved given a fixed number of function evaluations (N-dimensional)


After the following comment from Geoffrey Oxberry in the scipy mailing list:

Note

One of the typical plots used to assess performance is a “performance profile”, which was defined in “Benchmarking Optimization Software with Performance Profiles” by Dolan and More (http://arxiv.org/pdf/cs/0102001.pdf). I didn’t see any plots in this format. Do you plan on presenting performance data in this manner? The solved problems versus function evaluations looks pretty close to this sort of presentation. This sort of format also avoids some of the pitfalls mentioned on your site re: performance comparisons.

I converted the Matlab code used by Dolan and More to Python and produced the following output:

AMPGO N-D results

AMPGO Performance profiles for the various optimization algorithms (N-dimensional)


The following table is a split-by-benchmark function of the first table, showing the percentage of successful optimizations per benchmark, considering 100 random starting points.

Optimization algorithms performances (N-dimensional)
Function Name N AMPGO ASA BasinHopping CMA-ES CRS2 DE DIRECT Firefly Galileo MLSL PSWARM SCE SIMANN
Ackley 2 43 99 1 17 80 0 100 0 0 0 2 100 0
Adjiman 2 100 100 100 99 96 100 0 100 0 0 100 100 0
Alpine01 2 100 100 0 98 61 0 100 1 0 100 64 67 0
Alpine02 2 98 100 31 38 86 100 100 97 0 0 78 99 74
AMGM 2 100 100 100 100 53 100 0 100 59 0 88 100 0
BartelsConn 2 100 100 0 100 92 0 0 13 0 0 23 100 0
Beale 2 100 3 100 71 70 0 100 78 0 0 83 100 0
Bird 2 100 100 44 53 64 100 100 70 0 0 73 97 0
Bohachevsky 2 100 100 100 91 94 0 100 95 0 0 91 100 0
BoxBetts 3 100 0 92 89 88 0 0 86 0 0 8 100 0
Branin01 2 100 100 100 100 81 0 100 100 0 0 70 96 0
Branin02 2 100 18 24 5 21 0 100 6 0 0 5 16 0
Brent 2 100 100 100 100 34 0 100 100 0 0 100 100 0
Brown 2 100 96 100 100 83 0 100 100 0 0 100 100 0
Bukin02 2 100 100 100 100 100 100 100 100 100 0 100 100 0
Bukin04 2 100 100 0 100 80 100 0 61 0 100 100 100 0
Bukin06 2 94 0 0 0 0 0 0 0 0 0 0 0 0
CarromTable 2 100 100 41 13 43 100 100 93 57 0 99 100 0
Chichinadze 2 71 100 18 9 41 0 54 15 0 0 75 57 0
Cigar 2 100 98 0 100 71 0 0 0 0 100 32 100 0
Cola 17 58 0 0 0 0 0 0 0 0 0 0 0 0
Colville 4 100 0 0 100 0 100 100 100 9 100 84 100 1
Corana 4 0 100 55 6 0 0 0 4 0 0 51 31 0
CosineMixture 2 100 100 100 100 0 100 100 100 100 0 100 100 0
CrossInTray 2 79 100 4 12 98 0 100 100 0 0 100 71 0
CrossLegTable 2 0 0 0 0 0 0 0 0 0 0 0 0 9
CrownedCross 2 3 0 0 0 0 0 0 0 0 0 0 0 0
Csendes 2 100 100 100 100 99 0 100 100 12 0 100 100 0
Cube 2 100 0 0 95 64 51 0 19 0 54 48 100 0
Damavandi 2 18 0 0 0 1 0 0 0 0 0 0 0 0
Deb01 2 100 100 100 99 55 100 0 100 0 100 27 0 0
Deb02 2 100 100 100 98 94 0 100 98 0 100 16 9 0
Decanomial 2 93 35 0 97 91 0 0 20 0 37 99 100 0
Deceptive 2 31 98 0 3 7 0 0 0 0 100 2 67 0
DeckkersAarts 2 100 100 99 97 97 100 100 83 0 0 100 100 0
DeflectedCorrugatedSpring 2 96 0 100 0 48 100 0 65 0 0 100 47 0
DeVilliersGlasser01 4 100 0 7 6 0 0 0 0 0 100 0 0 0
DeVilliersGlasser02 5 1 0 0 0 0 0 0 0 0 0 0 0 0
DixonPrice 2 100 97 100 100 82 56 100 100 0 41 100 97 0
Dolan 5 100 0 0 87 0 0 100 4 0 100 17 0 0
DropWave 2 34 20 93 0 43 0 0 57 0 0 5 0 0
Easom 2 5 74 0 4 25 0 0 0 0 62 1 100 0
EggCrate 2 94 100 31 14 78 0 100 87 0 47 100 100 0
EggHolder 2 59 2 2 1 19 0 0 7 0 0 24 0 100
ElAttarVidyasagarDutta 2 100 44 62 52 64 0 100 1 0 0 56 92 0
Exp2 2 100 98 10 7 20 0 0 1 0 0 54 89 0
Exponential 2 100 100 100 100 97 47 100 100 0 0 100 100 0
FreudensteinRoth 2 100 58 25 37 55 0 0 28 0 100 95 95 0
Gear 4 44 100 3 96 97 100 0 100 1 0 91 98 0
Giunta 2 100 100 69 60 96 0 100 93 0 0 100 100 0
GoldsteinPrice 2 100 74 94 82 82 0 100 97 0 0 100 99 0
Griewank 2 3 17 0 0 60 0 0 3 0 0 1 0 0
Gulf 3 59 0 3 1 41 0 0 0 0 0 0 19 0
Hansen 2 80 56 80 17 43 52 51 91 0 0 31 5 0
Hartmann3 3 100 0 100 92 87 0 0 26 0 0 100 100 0
Hartmann6 6 100 0 20 67 1 0 100 54 0 0 63 95 0
HelicalValley 3 100 0 100 100 15 0 52 0 0 81 0 100 0
HimmelBlau 2 100 0 100 100 87 0 100 100 0 0 59 97 0
HolderTable 2 100 100 52 20 91 100 100 95 96 0 100 100 0
Holzman 3 100 100 80 42 0 100 0 100 0 100 0 100 100
Hosaki 2 100 100 87 88 97 100 100 99 0 0 100 100 0
Infinity 2 100 100 100 100 100 0 100 100 10 0 100 100 0
JennrichSampson 2 100 2 0 100 81 0 50 61 0 0 54 100 0
Judge 2 100 8 100 77 86 0 41 100 0 0 98 100 0
Katsuura 2 100 92 100 96 0 0 100 100 0 0 100 99 0
Keane 2 100 100 100 100 60 100 0 100 100 100 9 100 0
Kowalik 4 92 0 4 19 1 0 0 0 0 0 0 67 0
Langermann 2 97 70 71 10 65 100 0 62 0 0 82 100 0
LennardJones 6 100 0 90 85 6 0 100 100 0 100 52 5 0
Leon 2 100 0 0 100 61 0 56 44 0 0 1 100 0
Levy03 2 100 100 96 28 96 58 0 100 0 56 100 100 0
Levy05 2 26 50 74 14 47 100 43 81 0 0 56 68 0
Levy13 2 100 100 100 64 87 58 0 100 0 47 70 100 0
Matyas 2 100 31 100 100 81 44 100 100 0 0 100 100 0
McCormick 2 100 100 52 59 71 0 100 99 0 0 100 100 0
Michalewicz 2 100 100 100 53 86 100 100 90 0 0 100 100 36
MieleCantrell 4 93 1 97 100 98 0 50 51 0 0 28 100 0
Mishra01 2 100 100 100 98 0 100 100 100 0 0 5 100 0
Mishra02 2 100 100 100 100 0 100 100 100 0 0 100 100 0
Mishra03 2 43 7 0 4 20 0 50 0 0 0 24 4 93
Mishra04 2 29 3 0 1 15 0 0 2 0 0 6 2 91
Mishra05 2 97 78 88 14 96 0 44 21 3 0 60 71 0
Mishra06 2 100 54 36 49 79 47 100 91 0 0 85 0 0
Mishra07 2 100 100 100 100 90 53 100 100 0 100 58 77 0
Mishra08 2 94 38 0 98 94 0 0 18 0 88 99 100 0
Mishra09 3 100 100 0 99 58 0 100 41 0 61 15 37 0
Mishra10 2 0 99 20 37 0 100 0 99 34 0 79 99 78
Mishra11 2 100 100 100 100 88 53 100 100 0 47 71 37 5
MultiModal 2 100 100 0 100 88 0 100 97 0 100 100 100 0
NeedleEye 2 100 100 0 100 0 100 0 37 0 0 100 95 0
NewFunction01 2 60 7 0 2 52 0 0 4 0 0 12 29 35
NewFunction02 2 42 1 0 2 19 0 0 1 0 0 5 23 36
NewFunction03 2 100 83 100 19 100 100 57 88 28 0 95 61 0
OddSquare 2 6 18 2 8 92 100 0 100 0 0 55 5 2
Parsopoulos 2 100 100 89 94 61 0 100 100 0 0 41 34 0
Pathological 2 30 15 8 0 0 0 100 0 0 0 92 0 0
Paviani 10 100 0 100 100 0 0 0 0 0 0 0 85 0
Penalty01 2 100 99 38 91 98 0 100 100 0 0 52 100 0
Penalty02 2 52 43 100 29 75 0 0 53 0 0 20 16 0
PenHolder 2 100 100 19 19 96 100 100 98 95 0 100 100 100
PermFunction01 2 100 0 100 100 79 0 100 100 0 100 17 100 0
PermFunction02 2 100 0 100 100 85 0 100 100 0 0 99 100 0
Pinter 2 96 82 97 34 79 0 100 98 0 52 54 92 0
Plateau 2 43 100 53 83 0 100 0 100 93 0 100 100 100
Powell 4 100 0 0 100 43 0 0 2 0 0 6 100 0
PowerSum 4 92 0 0 16 0 0 0 0 0 0 0 1 0
Price01 2 100 100 100 99 71 0 100 6 0 55 100 68 0
Price02 2 65 43 1 2 34 0 0 36 0 0 24 36 0
Price03 2 100 5 55 52 38 0 100 7 0 0 54 54 0
Price04 2 100 18 4 100 81 42 44 65 0 70 19 100 0
Qing 2 100 100 100 100 85 0 100 2 0 0 100 75 0
Quadratic 2 100 100 100 100 96 100 100 97 0 0 100 100 0
Quintic 2 100 95 0 100 65 52 56 0 0 100 50 83 0
Rana 2 96 95 13 7 49 100 54 21 29 0 94 65 95
Rastrigin 2 97 73 81 6 88 0 0 49 0 0 31 48 0
Ripple01 2 100 32 0 3 68 0 0 2 0 0 32 0 0
Ripple25 2 100 93 65 8 89 0 0 7 0 0 87 67 0
Rosenbrock 2 100 0 0 100 67 0 100 51 0 100 0 100 0
RosenbrockModified 2 60 4 0 2 13 55 0 10 0 0 1 9 0
RotatedEllipse01 2 100 98 100 100 69 0 100 1 0 0 100 100 0
RotatedEllipse02 2 100 100 100 98 79 0 100 9 0 0 100 100 0
Salomon 2 5 8 95 0 25 0 0 0 0 0 3 0 0
Sargan 2 100 100 100 100 87 0 100 70 0 0 100 100 0
Schaffer01 2 3 40 1 0 87 0 0 91 0 0 14 0 0
Schaffer02 2 15 36 3 4 93 48 0 100 0 100 24 3 0
Schaffer03 2 23 39 0 7 91 44 0 100 0 0 18 6 0
Schaffer04 2 13 31 2 0 91 32 0 99 0 0 6 3 2
SchmidtVetters 3 100 98 100 90 100 100 100 100 34 0 53 100 98
Schwefel01 2 100 100 100 100 91 0 100 100 0 0 100 100 0
Schwefel02 2 100 100 100 100 94 0 100 100 0 51 100 100 0
Schwefel04 2 100 100 100 100 58 0 100 100 0 100 100 100 0
Schwefel06 2 100 0 0 100 70 0 100 0 0 0 4 100 0
Schwefel20 2 100 94 0 100 61 0 100 0 0 48 10 100 0
Schwefel21 2 100 88 0 100 71 0 100 0 0 0 19 100 0
Schwefel22 2 98 98 0 96 63 0 100 0 0 100 10 100 0
Schwefel26 2 80 84 10 10 55 52 100 51 48 0 79 92 99
Schwefel36 2 0 100 100 24 18 0 100 100 0 0 87 100 0
Shekel05 4 100 0 46 43 25 0 100 48 0 0 48 42 0
Shekel07 4 100 0 52 35 31 0 100 60 0 0 63 70 0
Shekel10 4 100 0 52 35 40 0 100 49 0 0 53 71 0
Shubert01 2 91 100 90 19 57 0 46 57 0 0 28 0 0
Shubert03 2 82 93 17 3 16 0 100 53 0 0 18 0 0
Shubert04 2 88 100 89 8 50 100 49 79 0 0 31 6 0
SineEnvelope 2 9 6 1 0 6 0 0 3 0 0 1 0 0
SixHumpCamel 2 100 100 100 90 96 100 100 100 0 0 100 99 0
Sodp 2 100 100 100 100 94 0 100 100 0 0 100 100 0
Sphere 2 100 100 100 100 84 0 100 100 0 48 100 100 0
Step 2 0 100 0 92 0 100 0 100 1 0 100 100 4
Stochastic 2 0 5 0 20 13 0 97 0 0 0 0 0 0
StretchedV 2 100 0 96 99 76 0 100 100 2 100 39 25 0
StyblinskiTang 2 100 100 55 28 80 0 100 78 0 0 99 98 0
TestTubeHolder 2 91 61 42 3 81 100 0 31 0 0 35 6 0
ThreeHumpCamel 2 100 83 100 78 91 0 100 100 0 0 99 100 0
Treccani 2 100 100 100 100 87 49 100 100 0 64 100 99 0
Trefethen 2 1 4 8 5 9 0 0 1 0 0 4 0 0
Trid 6 100 0 100 100 0 0 100 4 0 0 18 100 0
Trigonometric01 2 100 100 100 100 46 100 100 100 3 100 86 100 0
Trigonometric02 2 9 99 59 70 88 0 49 5 0 0 24 49 0
Tripod 2 99 20 0 49 34 0 100 0 0 50 2 43 0
Ursem01 2 100 100 60 60 100 100 100 99 0 0 100 100 0
Ursem03 2 43 100 3 13 80 0 100 0 0 42 6 100 18
Ursem04 2 100 93 0 62 73 0 100 2 0 100 8 100 0
UrsemWaves 2 100 6 100 51 0 0 0 61 0 0 47 0 0
VenterSobiezcczanskiSobieski 2 61 100 62 2 89 0 100 1 0 0 30 87 0
Vincent 2 100 100 100 100 94 0 100 98 0 0 47 59 0
Watson 6 100 0 0 46 0 0 0 0 0 0 0 77 0
Wavy 2 39 80 8 2 84 0 0 63 0 0 62 30 0
WayburnSeader01 2 100 6 0 100 86 0 38 50 0 94 59 97 0
WayburnSeader02 2 100 4 0 97 90 0 0 5 0 0 2 97 0
Weierstrass 2 0 57 0 92 81 0 0 0 0 0 0 98 0
Whitley 2 5 2 28 3 24 0 0 0 0 0 2 0 0
Wolfe 3 100 0 100 100 0 0 0 100 0 0 100 100 0
XinSheYang01 2 0 24 0 16 62 2 41 7 0 0 0 0 0
XinSheYang02 2 63 35 0 10 49 0 100 0 0 0 5 100 0
XinSheYang03 2 5 3 0 0 0 0 0 5 0 0 0 0 0
XinSheYang04 2 40 53 0 1 65 0 0 0 0 0 4 100 0
Xor 9 100 0 55 79 49 0 0 41 0 0 70 13 7
YaoLiu04 2 100 100 0 100 83 0 100 36 0 100 34 96 1
YaoLiu09 2 97 67 79 5 85 0 0 47 0 0 35 41 0
Zacharov 2 100 100 100 100 86 0 100 100 0 0 100 100 0
ZeroSum 2 0 0 0 69 0 0 0 0 0 0 8 100 0
Zettl 2 100 100 100 99 87 0 100 100 0 0 100 100 0
Zimmerman 2 1 5 0 37 14 0 0 0 0 0 0 47 0
Zirilli 2 100 100 100 83 97 100 100 100 0 0 100 100 0

The following table is a split-by-benchmark function of the first table, showing the average number of functions evaluations for successful optimizations only, considering 100 random starting points.

Optimization algorithms performances (N-dimensional)
Function Name N AMPGO ASA BasinHopping CMA-ES CRS2 DE DIRECT Firefly Galileo MLSL PSWARM SCE SIMANN
Ackley 2 1515 1288 1691 454 1201 2019 234 2000 85 2586 349 522 1186
Adjiman 2 14 1254 639 239 273 1453 176 392 172 2347 450 394 2001
Alpine01 2 251 1267 2002 614 931 2019 511 1999 99 1126 842 1370 910
Alpine02 2 271 1207 575 298 600 823 218 1156 151 3358 968 379 1188
AMGM 2 15 471 466 187 965 360 2001 28 63 2255 864 35 2001
BartelsConn 2 102 1234 2033 657 795 2019 322 1976 89 1634 345 335 1496
Beale 2 33 857 1645 531 596 2019 600 1452 94 5131 1341 316 1597
Bird 2 85 1224 883 350 646 1377 253 1851 129 3130 1191 492 821
Bohachevsky 2 250 1286 1229 471 755 2019 290 1788 88 2207 339 420 1063
BoxBetts 3 29 4589 1940 573 628 2018 196 870 114 6707 3472 214 2001
Branin01 2 11 1265 875 407 564 969 264 1322 97 2990 1258 494 1221
Branin02 2 290 955 713 386 620 1011 620 1929 99 3974 958 1819 1099
Brent 2 2 1223 241 474 1170 2019 278 1366 102 2069 395 281 1360
Brown 2 14 1197 591 357 465 2019 156 1020 120 2123 340 192 1108
Bukin02 2 8 1242 488 39 371 46 698 23 24 2829 462 14 2001
Bukin04 2 68 1371 2025 705 682 360 2001 1759 59 59 450 316 1836
Bukin06 2 842 1226 2047 965 877 381 2001 2000 91 238 928 2004 877
CarromTable 2 101 1266 495 316 900 213 210 410 81 5512 469 365 2001
Chichinadze 2 1209 1214 1162 517 597 2019 174 1974 112 3679 474 1397 1222
Cigar 2 26 1245 2018 900 926 2019 258 2000 942 503 418 1474
Cola 17 1360 60687 2018 2006 2001 2055 2001 2000 925 7979 4020 2039 669
Colville 4 125 7929 2041 242 2003 371 826 196 112 746 1469 151 1167
Corana 4 2026 576 542 776 2001 1447 2001 1948 228 3749 665 1780 1159
CosineMixture 2 3 1284 208 8 2001 46 292 20 29 2868 380 10 2001
CrossInTray 2 924 1239 522 305 644 2019 204 1106 148 6148 347 1159 2001
CrossLegTable 2 2007 1255 1615 870 550 2019 138 2000 192 276 2316 2010 793
CrownedCross 2 2020 1254 2969 933 525 2019 190 2000 97 267 2293 2009 2001
Csendes 2 21 516 1046 183 141 2019 40 65 71 2201 301 49 2001
Cube 2 58 738 2015 1195 925 473 1379 1933 59 977 1432 586 1698
Damavandi 2 1827 1270 505 385 586 360 2001 2000 60 2267 281 2004 1260
Deb01 2 35 1229 1368 534 1132 360 2001 1535 116 1060 2563 2011 1264
Deb02 2 113 1220 1103 471 756 444 110 1355 174 167 3226 1912 1954
Decanomial 2 522 37 2015 730 555 2019 92 1926 1086 362 264 251
Deceptive 2 3017 1260 7607 606 636 2019 248 2000 184 775 1078 1446 2001
DeckkersAarts 2 44 1304 1059 302 936 791 490 1269 101 5380 473 196 1272
DeflectedCorrugatedSpring 2 700 783 361 734 360 2001 1637 60 4221 286 1758 1679
DeVilliersGlasser01 4 231 14114 1963 1972 1853 1274 2001 2000 1783 3913 2014 1934
DeVilliersGlasser02 5 2139 47968 1994 2002 1828 1737 2001 2000 348 2303 3922 2020 1692
DixonPrice 2 17 1330 1106 451 644 1607 431 1482 80 2003 361 380 1598
Dolan 5 86 43089 2047 1423 2001 1842 884 1992 175 866 3313 2019 1047
DropWave 2 1677 1138 770 422 871 720 174 1766 165 4391 305 2008 1950
Easom 2 1949 1226 1034 438 1024 2019 180 2000 78 3199 419 700 1019
EggCrate 2 556 1302 744 379 692 2019 270 1617 95 1388 388 352 909
EggHolder 2 1381 1269 680 500 568 1011 600 1947 165 7069 1220 2008 908
ElAttarVidyasagarDutta 2 109 1314 1306 618 842 1456 728 1998 4579 392 686 1975
Exp2 2 164 1301 370 343 580 2019 8 1997 94 2735 1318 1022 877
Exponential 2 6 1264 431 313 449 1999 128 776 162 2103 299 160 2001
FreudensteinRoth 2 89 1126 1554 631 648 2019 719 1937 107 1124 919 637 1934
Gear 4 1555 414 101 649 447 1725 2001 146 141 2543 1030 274 2001
Giunta 2 45 1234 693 327 457 2019 219 921 96 2231 319 187 2001
GoldsteinPrice 2 56 1144 1708 438 677 1537 348 1643 90 4375 329 298 1690
Griewank 2 1990 1277 569 439 1056 845 348 1997 95 2556 412 2007 1092
Gulf 3 2037 4382 127 952 1325 1522 522 2000 101 6266 3978 1917 281
Hansen 2 859 1228 1064 418 734 1140 252 1396 141 6219 2721 1987 734
Hartmann3 3 45 4299 1638 616 896 2018 230 1847 295 6698 579 355 2001
Hartmann6 6 69 19805 1996 1481 1959 2016 750 1800 523 7744 1247 952 2001
HelicalValley 3 33 1936 1057 1974 1772 1511 2000 99 864 3385 711 835
HimmelBlau 2 15 893 406 675 2019 271 1598 94 2216 1577 481 1199
HolderTable 2 92 1279 599 304 309 89 224 289 47 6272 464 62 2001
Holzman 3 194 0 1245 9 2001 66 2001 20 335 4015 14 251
Hosaki 2 162 1252 779 216 550 739 302 800 162 2465 349 164 2001
Infinity 2 16 531 1052 181 139 2019 40 64 71 2197 299 49 2001
JennrichSampson 2 32 1381 2019 557 810 927 524 1906 99 7841 552 407 914
Judge 2 38 1269 1175 358 739 2019 526 1614 79 4009 609 290 1424
Katsuura 2 2 1281 177 1237 2001 2019 994 54 105 115 412 1070 2001
Keane 2 6 977 524 8 911 47 2001 20 24 1585 3547 10 2001
Kowalik 4 814 7965 1984 1718 1373 1966 625 2000 158 7766 3888 1456 1995
Langermann 2 865 1245 1123 393 607 1201 178 1662 113 5781 762 727 1977
LennardJones 6 82 23343 242 1675 1978 2016 508 904 260 724 2071 1964 2001
Leon 2 34 853 2015 616 599 1707 1311 1687 85 2952 2466 318 1473
Levy03 2 198 1255 926 373 571 1056 987 1233 81 2281 289 227 1513
Levy05 2 1717 1268 1306 471 908 1360 218 1745 100 4580 1050 1545 825
Levy13 2 430 1242 1554 544 709 1056 1035 1630 78 1824 285 533 1127
Matyas 2 6 1374 607 410 541 1162 272 1078 64 2193 432 203 1915
McCormick 2 28 1274 690 350 419 2019 242 1127 128 2504 369 213 2001
Michalewicz 2 352 1238 1327 262 596 739 144 1196 136 3666 338 246 942
MieleCantrell 4 180 6000 1801 530 308 2012 269 1259 153 7637 2992 241 1951
Mishra01 2 2 1200 152 11 2001 1201 674 45 80 2091 3657 303 2001
Mishra02 2 2 1270 176 23 2001 1789 480 84 106 2164 387 565 2001
Mishra03 2 1499 1154 2041 905 437 1044 421 2000 93 284 1871 1975 1240
Mishra04 2 1722 1194 2044 905 683 626 357 1982 101 247 2177 1994 1266
Mishra05 2 558 1285 1643 681 362 602 494 1681 94 5786 1026 1152 2001
Mishra06 2 219 1244 899 412 659 1614 250 1527 130 3716 357 2005 1393
Mishra07 2 9 1169 583 401 653 1152 262 824 80 322 1651 958 1414
Mishra08 2 472 29 2016 734 547 2019 91 1938 1658 387 267 251
Mishra09 3 177 0 2024 1072 1665 1626 469 1775 288 2844 1592 251
Mishra10 2 2139 58 111 145 2001 381 2001 66 65 2565 888 64 850
Mishra11 2 13 1168 667 380 659 791 213 611 87 2612 1336 1609 1672
MultiModal 2 58 1042 2028 465 442 2019 160 808 94 677 338 270 1418
NeedleEye 2 46 649 2020 454 2001 1372 332 1932 97 2634 309 545 1074
NewFunction01 2 1345 1142 1975 908 907 528 324 1946 99 232 1686 1722 1702
NewFunction02 2 1557 1151 1988 906 541 519 279 1988 78 190 2408 1779 1730
NewFunction03 2 432 1337 1118 479 343 881 349 510 85 4323 382 1064 2001
OddSquare 2 1957 1033 245 109 1085 1649 62 1377 87 4554 402 1966 1979
Parsopoulos 2 19 1260 497 335 551 2019 184 1194 95 2501 2512 1619 1969
Pathological 2 1684 1240 751 557 1714 360 142 2000 61 5014 822 2009 1708
Paviani 10 29 79149 1357 1457 2001 2023 2001 2000 1062 8139 2955 1829 258
Penalty01 2 143 1278 783 494 660 2019 289 1395 84 2623 345 352 1754
Penalty02 2 1393 1251 1752 700 792 2019 401 1901 75 2365 371 1895 1533
PenHolder 2 166 1264 574 241 428 76 138 128 53 6024 537 43 291
PermFunction01 2 18 1597 428 640 549 380 1173 84 219 2377 284 1709
PermFunction02 2 17 1549 445 732 1137 250 1574 97 2954 804 361 1284
Pinter 2 628 1298 1183 460 711 2019 490 1751 85 1908 336 710 925
Plateau 2 1669 17 101 152 2001 360 2001 32 65 2880 242 23 747
Powell 4 36 11842 2014 1086 1908 1069 1014 1989 150 7419 3806 560 1136
PowerSum 4 998 11953 2123 1874 2001 1520 934 2000 159 7915 3971 2012 1426
Price01 2 6 1272 368 591 838 2019 432 1994 83 1092 382 1278 994
Price02 2 1307 1255 496 329 769 1281 164 1771 94 2707 2269 1817 1728
Price03 2 93 1282 1918 585 874 1172 612 1991 87 2336 1563 1177 1367
Price04 2 48 1117 2009 770 715 1520 428 1691 1885 2394 359 1864
Qing 2 27 1321 963 615 932 2019 566 1998 2414 383 1084 1316
Quadratic 2 6 1283 651 291 792 1378 429 1758 119 2678 327 244 1048
Quintic 2 193 1272 2060 706 1184 1156 1304 2000 75 562 287 1077 1550
Rana 2 581 1273 428 445 1301 445 491 1641 112 6758 726 1152 974
Rastrigin 2 529 1268 1278 453 902 1240 278 1902 106 5477 402 1712 857
Ripple01 2 215 1242 2013 693 953 591 208 1997 159 1759 1064 2008 1650
Ripple25 2 368 1271 1130 483 695 2019 216 1954 157 2187 1136 1408 1928
Rosenbrock 2 53 694 2013 854 863 717 506 1824 86 943 2676 552 1516
RosenbrockModified 2 1357 725 2000 608 831 971 655 1834 89 7674 2968 1884 1372
RotatedEllipse01 2 10 1324 505 612 875 1514 476 1999 72 2215 393 344 1035
RotatedEllipse02 2 6 1322 522 575 819 2019 448 1989 75 2035 385 320 1032
Salomon 2 1955 1163 953 411 1106 1554 152 2000 75 3446 340 2006 971
Sargan 2 6 1311 505 505 757 2019 478 1898 100 2159 363 289 1051
Schaffer01 2 1977 1089 542 1019 811 1756 88 1192 93 3862 378 2008 339
Schaffer02 2 1908 1248 618 1210 708 1777 152 942 73 215 2161 1984 369
Schaffer03 2 1839 1291 662 1219 1015 940 90 959 96 5680 2204 1923 334
Schaffer04 2 1878 1315 549 1150 1062 1811 96 1004 92 6097 2362 1988 289
SchmidtVetters 3 24 37 1134 10 741 67 186 20 24 9572 1909 14 286
Schwefel01 2 31 1167 1062 410 539 2019 176 1169 87 2322 372 200 1256
Schwefel02 2 4 950 352 452 375 2019 234 1072 78 1306 461 194 1538
Schwefel04 2 14 1318 917 415 482 2019 282 1305 104 231 396 231 1707
Schwefel06 2 309 1047 2064 770 1220 2019 755 2000 84 4114 440 493 880
Schwefel20 2 171 1261 2061 715 1043 2019 448 2000 93 3131 366 484 850
Schwefel21 2 255 1275 2061 712 1146 2019 476 2000 77 1819 368 479 844
Schwefel22 2 302 1274 2059 1119 1153 2019 562 2000 102 837 382 532 1009
Schwefel26 2 730 1266 428 429 635 1091 423 1232 74 7057 814 541 785
Schwefel36 2 2003 1252 673 468 1708 2019 464 58 104 2159 1071 425 2001
Shekel05 4 253 8054 1048 653 1907 1971 428 1859 313 6822 1051 1432 2000
Shekel07 4 151 8281 1114 636 1907 1971 280 1491 328 7034 924 930 1991
Shekel10 4 201 8242 1104 635 1861 2012 278 1571 324 6963 1027 913 1994
Shubert01 2 629 1195 1145 433 864 1217 227 1932 140 5878 2822 2009 725
Shubert03 2 878 1244 703 398 684 1678 223 1928 137 5904 2859 2010 849
Shubert04 2 634 1232 1088 414 754 1351 216 1873 131 6360 2725 1980 846
SineEnvelope 2 1918 1117 451 266 973 1199 104 1994 92 5153 370 2010 544
SixHumpCamel 2 26 1250 946 268 635 882 232 1380 90 2502 325 366 1746
Sodp 2 11 1030 1195 312 365 2019 134 594 77 2134 300 143 2001
Sphere 2 4 1296 353 360 547 2019 224 1201 78 1176 318 210 1593
Step 2 2032 111 101 282 2001 610 2001 267 87 2027 279 88 989
Stochastic 2 2013 840 2015 1810 1941 935 820 2000 97 89 518 2009 892
StretchedV 2 9 574 353 759 573 202 870 89 292 2503 1696 2001
StyblinskiTang 2 79 1242 787 386 658 2019 352 1641 150 2515 388 395 1073
TestTubeHolder 2 927 1286 630 352 952 1356 140 1849 159 7012 1102 1960 945
ThreeHumpCamel 2 34 1247 717 382 585 2019 404 1230 86 2400 319 240 1916
Treccani 2 12 1262 927 395 599 896 235 1275 99 951 333 327 1750
Trefethen 2 2009 1249 1696 729 1091 1288 212 1997 84 1833 321 2007 1039
Trid 6 14 14136 1335 1272 2002 2016 1342 1993 566 7767 2372 986 859
Trigonometric01 2 5 1086 205 351 1210 402 176 442 91 135 861 318 2001
Trigonometric02 2 1942 1264 1955 678 911 2019 421 1994 90 264 378 1699 991
Tripod 2 496 1257 2050 699 1081 2019 402 2000 105 2055 1682 1442 908
Ursem01 2 29 1258 635 219 536 529 236 759 169 2229 348 150 2001
Ursem03 2 1603 1240 1996 532 1008 2019 336 2000 147 5073 535 703 1843
Ursem04 2 128 1259 1267 482 875 2019 304 1984 134 543 317 388 2001
UrsemWaves 2 62 1208 539 413 1218 2019 198 852 174 3375 711 2006 2001
VenterSobiezcczanskiSobieski 2 1325 1277 920 436 936 2019 480 1999 96 4351 369 1446 941
Vincent 2 11 1193 674 371 702 2019 296 1279 163 4013 2178 1263 2001
Watson 6 78 21209 2024 1930 2001 2016 2001 2000 198 7975 4007 1452 1482
Wavy 2 1740 1280 1162 432 789 2019 174 1663 92 6633 462 1859 501
WayburnSeader01 2 40 1292 2019 673 770 1774 566 1848 102 884 1780 649 2001
WayburnSeader02 2 50 1315 2015 703 938 1653 984 1995 2632 3027 853 1414
Weierstrass 2 2050 1271 2083 630 1529 2019 250 2000 101 267 296 1195 1082
Whitley 2 1958 1269 1814 679 1147 843 496 2000 80 297 435 2006 1300
Wolfe 3 6 4586 449 940 2001 2018 676 107 148 2837 488 804 2001
XinSheYang01 2 2012 931 2014 1842 1557 1146 1616 1965 96 88 399 2007 1146
XinSheYang02 2 1299 1208 2041 441 909 2019 418 2000 92 4949 359 687 1556
XinSheYang03 2 1909 130 142 147 35 2019 16 1980 90 3034 799 2010 2001
XinSheYang04 2 1609 1249 566 324 1093 2019 170 2000 92 4148 688 1031 1984
Xor 9 51 48195 1700 952 1512 1823 1104 1363 209 8438 1334 1921 1658
YaoLiu04 2 60 1202 2033 593 567 1109 349 1913 80 299 593 553 1632
YaoLiu09 2 545 1252 1268 444 868 1227 278 1910 107 2606 396 1790 908
Zacharov 2 11 1314 716 400 586 2019 290 1335 106 2354 339 221 1721
ZeroSum 2 2169 1212 2042 947 784 704 2001 2000 85 282 835 695 879
Zettl 2 22 1272 1511 429 501 2019 212 1085 93 3940 390 256 1991
Zimmerman 2 1987 1244 2047 1184 1570 2019 672 2000 103 927 459 1424 1152
Zirilli 2 35 1238 763 225 589 660 257 815 79 2325 336 241 1668

Table Of Contents

Previous topic

The AMPGO Solver

Next topic

Univariate Benchmarks Results

This Page