test_functions N-D Test Functions U

class go_benchmark.Ursem01(dimensions=2)

Ursem 1 test objective function.

This class defines the Ursem 1 global optimization problem. This is a unimodal minimization problem defined as follows:

f_{\text{Ursem01}}(\mathbf{x}) = - \sin(2x_1 - 0.5 \pi) - 3 \cos(x_2) - 0.5x_1

Here, n represents the number of dimensions and x_1 \in [-2.5, 3], x_2 \in [-2, 2].

Ursem 1 function

Two-dimensional Ursem 1 function

Global optimum: f(x_i) = -4.8168 for \mathbf{x} = [1.69714, 0.0]


class go_benchmark.Ursem03(dimensions=2)

Ursem 3 test objective function.

This class defines the Ursem 3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Ursem03}}(\mathbf{x}) = - \sin(2.2 \pi x_1 + 0.5 \pi) \frac{2 - \lvert x_1 \rvert}{2} \frac{3 - \lvert x_1 \rvert}{2} - \sin(2.2 \pi x_2 + 0.5 \pi) \frac{2 - \lvert x_2 \rvert}{2} \frac{3 - \lvert x_2 \rvert}{2}

Here, n represents the number of dimensions and x_1 \in [-2, 2], x_2 \in [-1.5, 1.5].

Ursem 3 function

Two-dimensional Ursem 3 function

Global optimum: f(x_i) = -3 for x_i = 0 for i=1,2


class go_benchmark.Ursem04(dimensions=2)

Ursem 4 test objective function.

This class defines the Ursem 4 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Ursem04}}(\mathbf{x}) = -3 \sin(0.5 \pi x_1 + 0.5 \pi) \frac{2 - \sqrt{x_1^2 + x_2 ^ 2}}{4}

Here, n represents the number of dimensions and x_i \in [-2, 2] for i=1,2.

Ursem 4 function

Two-dimensional Ursem 4 function

Global optimum: f(x_i) = -1.5 for x_i = 0 for i=1,2


class go_benchmark.UrsemWaves(dimensions=2)

Ursem Waves test objective function.

This class defines the Ursem Waves global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{UrsemWaves}}(\mathbf{x}) = -0.9x_1^2 + (x_2^2 - 4.5x_2^2)x_1x_2 + 4.7 \cos \left[ 2x_1 - x_2^2(2 + x_1) \right ] \sin(2.5 \pi x_1)

Here, n represents the number of dimensions and x_1 \in [-0.9, 1.2], x_2 \in [-1.2, 1.2].

Ursem Waves function

Two-dimensional Ursem Waves function

Global optimum: f(x_i) = -8.5536 for x_i = 1.2 for i=1,2

Previous topic

N-D Test Functions T

Next topic

N-D Test Functions V

This Page