test_functions N-D Test Functions H

class go_benchmark.Hansen(dimensions=2)

Hansen test objective function.

This class defines the Hansen global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hansen}}(\mathbf{x}) = \left[ \sum_{i=0}^4(i+1)\cos(ix_1+i+1)\right ] \left[\sum_{j=0}^4(j+1)\cos[(j+2)x_2+j+1])\right ]

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

Hansen function

Two-dimensional Hansen function

Global optimum: f(x_i) = -2.3458 for \mathbf{x} = [-7.58989583, -7.70831466].


class go_benchmark.Hartmann3(dimensions=3)

Hartmann3 test objective function.

This class defines the Hartmann3 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hartmann3}}(\mathbf{x}) = -\sum\limits_{i=1}^{4} c_i e^{-\sum\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2}

Where, in this exercise:

\begin{array}{l|ccc|c|ccr}
\hline
i & & a_{ij}&  & c_i & & p_{ij} &  \\
\hline
1 & 3.0 & 10.0 & 30.0 & 1.0 & 0.689  & 0.1170 & 0.2673 \\
2 & 0.1 & 10.0 & 35.0 & 1.2 & 0.4699 & 0.4387 & 0.7470 \\
3 & 3.0 & 10.0 & 30.0 & 3.0 & 0.1091 & 0.8732 & 0.5547 \\
4 & 0.1 & 10.0 & 35.0 & 3.2 & 0.0381 & 0.5743 & 0.8828 \\
\hline
\end{array}

Here, n represents the number of dimensions and x_i \in [0, 1] for i=1,2,3.

Global optimum: f(x_i) = -3.86278214782076 for \mathbf{x} = [0.1, 0.55592003, 0.85218259]


class go_benchmark.Hartmann6(dimensions=6)

Hartmann6 test objective function.

This class defines the Hartmann6 global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hartmann6}}(\mathbf{x}) = -\sum\limits_{i=1}^{4} c_i e^{-\sum\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2}

Where, in this exercise:

\begin{array}{l|cccccc|r}
\hline
i & &   &   a_{ij} &  &  & & c_i  \\
\hline
1 & 10.0  & 3.0  & 17.0 & 3.50  & 1.70  & 8.00  & 1.0 \\
2 & 0.05  & 10.0 & 17.0 & 0.10  & 8.00  & 14.00 & 1.2 \\
3 & 3.00  & 3.50 & 1.70 & 10.0  & 17.00 & 8.00  & 3.0 \\
4 & 17.00 & 8.00 & 0.05 & 10.00 & 0.10  & 14.00 & 3.2 \\
\hline
\end{array}

\newline
\\
\newline

\begin{array}{l|cccccr}
\hline
i &  &   & p_{ij} &  & & \\
\hline
1 & 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\
2 & 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\
3 & 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\
4 & 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \\
\hline
\end{array}

Here, n represents the number of dimensions and x_i \in [0, 1] for i=1,...,6.

Global optimum: f(x_i) = -3.32236801141551 for \mathbf{x} = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054]


class go_benchmark.HelicalValley(dimensions=3)

HelicalValley test objective function.

This class defines the HelicalValley global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HelicalValley}}(\mathbf{x}) = 100{[z-10\Psi(x_1,x_2)]^2+(\sqrt{x_1^2+x_2^2}-1)^2}+x_3^2

Where, in this exercise:

2\pi\Psi(x,y) =  \begin{cases} \arctan(y/x) & \textrm{for} x > 0 \\
\pi + \arctan(y/x) & \textrm{for} x < 0 \end{cases}

Here, n represents the number of dimensions and x_i \in [-\infty, \infty] for i=1,2,3.

Global optimum: f(x_i) = 0 for \mathbf{x} = [1, 0, 0]


class go_benchmark.HimmelBlau(dimensions=2)

HimmelBlau test objective function.

This class defines the HimmelBlau global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HimmelBlau}}(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 -7)^2

Here, n represents the number of dimensions and x_i \in [-6, 6] for i=1,2.

HimmelBlau function

Two-dimensional HimmelBlau function

Global optimum: f(x_i) = 0 for \mathbf{x} = [0, 0]


class go_benchmark.HolderTable(dimensions=2)

HolderTable test objective function.

This class defines the HolderTable global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{HolderTable}}(\mathbf{x}) = - \left|{e^{\left|{1 - \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi} }\right|} \sin\left(x_{1}\right) \cos\left(x_{2}\right)}\right|

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

HolderTable function

Two-dimensional HolderTable function

Global optimum: f(x_i) = -19.20850256788675 for x_i = \pm 9.664590028909654 for i=1,2


class go_benchmark.Holzman(dimensions=3)

Holzman test objective function.

This class defines the Holzman global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Holzman}}(\mathbf{x}) = \sum_{i=0}^{99} \left [ e^{\frac{1}{x_1} (u_i-x_2)^{x_3}} -0.1(i+1) \right ]

Where, in this exercise:

u_i = 25 + (-50 \log{[0.01(i+1)]})^{2/3}

Here, n represents the number of dimensions and x_1 \in [0, 100], x_2 \in [0, 25.6], x_3 \in [0, 5].

Global optimum: f(x_i) = 0 for \mathbf{x} = [50, 25, 1.5]


class go_benchmark.Hosaki(dimensions=2)

Hosaki test objective function.

This class defines the Hosaki global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Hosaki}}(\mathbf{x}) = \left ( 1 - 8x_1 + 7x_1^2 - \frac{7}{3}x_1^3 + \frac{1}{4}x_1^4 \right )x_2^2e^{-x_1}

Here, n represents the number of dimensions and x_i \in [0, 10] for i=1,2.

Hosaki function

Two-dimensional Hosaki function

Global optimum: f(x_i) = -2.3458 for \mathbf{x} = [4, 2].

Previous topic

N-D Test Functions G

Next topic

N-D Test Functions I

This Page