test_functions N-D Test Functions C

class go_benchmark.CarromTable(dimensions=2)

CarromTable test objective function.

This class defines the CarromTable global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CarromTable}}(\mathbf{x}) = - \frac{1}{30} e^{2 \left|{1 - \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} \cos^{2}\left(x_{1}\right) \cos^{2}\left(x_{2}\right)

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

CarromTable function

Two-dimensional CarromTable function

Global optimum: f(x_i) = -24.15681551650653 for x_i = \pm 9.646157266348881 for i=1,...,n


class go_benchmark.Chichinadze(dimensions=2)

Chichinadze test objective function.

This class defines the Chichinadze global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Chichinadze}}(\mathbf{x}) = x_{1}^{2} - 12 x_{1} + 8 \sin\left(\frac{5}{2} \pi x_{1}\right) + 10 \cos\left(\frac{1}{2} \pi x_{1}\right) + 11 - 0.2 \frac{\sqrt{5}}{e^{\frac{1}{2} \left(x_{2} -0.5\right)^{2}}}

Here, n represents the number of dimensions and x_i \in [-30, 30] for i=1,2.

Chichinadze function

Two-dimensional Chichinadze function

Global optimum: f(x_i) = -42.94438701899098 for \mathbf{x} = [6.189866586965680, 0.5]


class go_benchmark.Cigar(dimensions=2)

Cigar test objective function.

This class defines the Cigar global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Cigar}}(\mathbf{x}) = x_1^2 + 10^6\sum_{i=2}^{n} x_i^2

Here, n represents the number of dimensions and x_i \in [-100, 100] for i=1,...,n.

Cigar function

Two-dimensional Cigar function

Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,n


class go_benchmark.Cola(dimensions=17)

Cola test objective function.

This class defines the Cola global optimization problem. The 17-dimensional function computes indirectly the formula f(n, u) by setting x_0 = y_0, x_1 = u_0, x_i = u_{2(i−2)}, y_i = u_{2(i−2)+1} :

f_{\text{Cola}}(\mathbf{x}) = \sum_{i<j}^{n} \left (r_{i,j} - d_{i,j} \right )^2

Where r_{i,j} is given by:

r_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}

And d is a symmetric matrix given by:

\mathbf{d} = \left [ d_{ij} \right ] = \begin{pmatrix}
1.27 &  &  &  &  &  &  &  & \\
1.69 & 1.43 &  &  &  &  &  &  & \\ 
2.04 & 2.35 & 2.43 &  &  &  &  &  & \\ 
3.09 & 3.18 & 3.26 & 2.85  &  &  &  &  & \\ 
3.20 & 3.22 & 3.27 & 2.88 & 1.55 &  &  &  & \\ 
2.86 & 2.56 & 2.58 & 2.59 & 3.12 & 3.06  &  &  & \\ 
3.17 & 3.18 & 3.18 & 3.12 & 1.31 & 1.64 & 3.00  & \\ 
3.21 & 3.18 & 3.18 & 3.17 & 1.70 & 1.36 & 2.95 & 1.32  & \\ 
2.38 & 2.31 & 2.42 & 1.94 & 2.85 & 2.81 & 2.56 & 2.91 & 2.97 
\end{pmatrix}

This function has bounds 0 \leq x_0 \leq 4 and -4 \leq x_i \leq 4 for i = 1,...,n-1. It has a global minimum of 11.7464.


class go_benchmark.Colville(dimensions=4)

Colville test objective function.

This class defines the Colville global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Colville}}(\mathbf{x}) = \left(x_{1} -1\right)^{2} + 100 \left(x_{1}^{2} - x_{2}\right)^{2} + 10.1 \left(x_{2} -1\right)^{2} + \left(x_{3} -1\right)^{2} + 90 \left(x_{3}^{2} - x_{4}\right)^{2} + 10.1 \left(x_{4} -1\right)^{2} + 19.8 \frac{x_{4} -1}{x_{2}}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,4.

Global optimum: f(x_i) = 0 for x_i = 1 for i=1,...,4


class go_benchmark.Corana(dimensions=4)

Corana test objective function.

This class defines the Corana global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Corana}}(\mathbf{x}) = \begin{cases} \sum_{i=1}^n 0.15 d_i [z_i - 0.05\textrm{sgn}(z_i)]^2 & \textrm{if}|x_i-z_i| < 0.05 \\
       d_ix_i^2 & \textrm{otherwise}\end{cases}

Where, in this exercise:

z_i = 0.2 \lfloor |x_i/s_i|+0.49999\rfloor\textrm{sgn}(x_i), d_i=(1,1000,10,100, ...)

Here, n represents the number of dimensions and x_i \in [-5, 5] for i=1,...,4.

Global optimum: f(x_i) = 0 for x_i = 0 for i=1,...,4


class go_benchmark.CosineMixture(dimensions=2)

Cosine Mixture test objective function.

This class defines the Cosine Mixture global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CosineMixture}}(\mathbf{x}) = -0.1 \sum_{i=1}^n \cos(5 \pi x_i) - \sum_{i=1}^n x_i^2

Here, n represents the number of dimensions and x_i \in [-1, 1] for i=1,...,N.

Cosine Mixture function

Two-dimensional Cosine Mixture function

Global optimum: f(x_i) = -0.1N for x_i = 0 for i=1,...,N


class go_benchmark.CrossInTray(dimensions=2)

Cross-in-Tray test objective function.

This class defines the Cross-in-Tray global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrossInTray}}(\mathbf{x}) = - 0.0001 \left(\left|{e^{\left|{100 - \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} \sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}

Here, n represents the number of dimensions and x_i \in [-15, 15] for i=1,2.

Cross-in-Tray function

Two-dimensional Cross-in-Tray function

Global optimum: f(x_i) = -2.062611870822739 for x_i = \pm 1.349406608602084 for i=1,2


class go_benchmark.CrossLegTable(dimensions=2)

Cross-Leg-Table test objective function.

This class defines the Cross-Leg-Table global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrossLegTable}}(\mathbf{x}) = - \frac{1}{\left(\left|{e^{\left|{100 - \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} \sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

Cross-Leg-Table function

Two-dimensional Cross-Leg-Table function

Global optimum: f(x_i) = -1. The global minimum is found on the planes x_1 = 0 and x_2 = 0


class go_benchmark.CrownedCross(dimensions=2)

Crowned Cross test objective function.

This class defines the Crowned Cross global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{CrownedCross}}(\mathbf{x}) = 0.0001 \left(\left|{e^{\left|{100- \frac{\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\right|} \sin\left(x_{1}\right) \sin\left(x_{2}\right)}\right| + 1\right)^{0.1}

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,2.

Crowned Cross function

Two-dimensional Crowned Cross function

Global optimum: f(x_i) = 0.0001. The global minimum is found on the planes x_1 = 0 and x_2 = 0


class go_benchmark.Csendes(dimensions=2)

Csendes test objective function.

This class defines the Csendes global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Csendes}}(\mathbf{x}) = \sum_{i=1}^n x_i^6 \left[ 2 + \sin \left( \frac{1}{x_i} \right ) \right]

Here, n represents the number of dimensions and x_i \in [-1, 1] for i=1,...,N.

Csendes function

Two-dimensional Csendes function

Global optimum: f(x_i) = 0.0 for x_i = 0 for i=1,...,N


class go_benchmark.Cube(dimensions=2)

Cube test objective function.

This class defines the Cube global optimization problem. This is a multimodal minimization problem defined as follows:

f_{\text{Cube}}(\mathbf{x}) = 100(x_2 - x_1^3)^2 + (1 - x1)^2

Here, n represents the number of dimensions and x_i \in [-10, 10] for i=1,...,N.

Cube function

Two-dimensional Cube function

Global optimum: f(x_i) = 0.0 for \mathbf{x} = [1, 1]

Previous topic

N-D Test Functions B

Next topic

N-D Test Functions D

This Page