Oily Python: a Reservoir Engineering Perspective

PyAr – November 17, 2012

Andrea Gavana

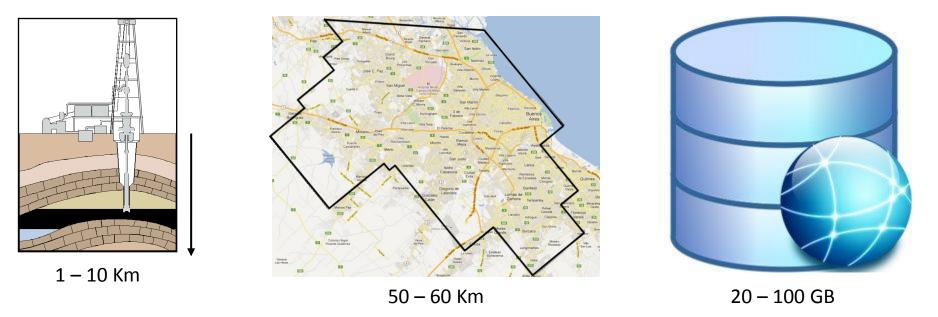
Maersk Oil

andrea.gavana@gmail.com andrea.gavana@maerskoil.com

Outline

- \checkmark What reservoir engineers do
- ✓ Data pre-processing and number crunching *xlrd* and *numpy*
- ✓ 2D visualizations matplotlib
- ✓ 3D visualizations *VTK, mayavi* and *NetworkX*
- ✓ Integration with the reservoir numerical simulator -f2py
- ✓ Automation and N-D interpolation Python and *scipy*
- ✓ Graphical user interfaces (GUIs) *wxPython*

Presentation samples: <u>http://www.infinity77.net/pycon/oily.zip</u>


What We Do

- ✓ Using all sorts of real-life measurements:
 - Man-made seismic waves
 - Detailed record of the geologic formations penetrated by a well (*logs*)
 - Rock properties, oil/water/gas content in the reservoir rock
 - Pressure/temperature vs. depth in a well
 - Oil/water/gas production rates measured at the well
 - ... and many others ...
- ✓ A reservoir engineer:
 - Builds a 3D numerical model representing the reservoir and runs time-dependent fluid flow simulations
 - Tries to calibrate that model, i.e., match the simulated results with the real data
 - Using the calibrated model, tries to predict the future performances of the field

What We Do – Complications

- ✓ Located underground: we can't go and see what's in there
- ✓ Sheer areal size hard to accurately model numerically
- ✓ Huge amount of data to pre-process and integrate
- ✓ Each simulation can easily generate 100 GB of results to analyze

Data Pre-Processing

"When fed with garbage data, a simulator is a machine that calculates meaningless results with incredible precision."

- ✓ A big part of the job is to ensure that the input data makes sense
 - Measurements come from many, unrelated sources
 - Data frequency both in time and depth varies wildly
 - Deep and thorough data checking needs to be carried out
- ✓ Dense visual representations of the input data are fundamental
 - Nothing beats seeing an image of your data to spot errors
 - Automatic filters and data adjustments (via Python code) are inherently limited
- ✓ Cleaned, sensible data can then be used to feed the simulation
 - One possible source of errors has been removed

Data Pre-Processing – xlrd

- ✓ Part of the data comes in Excel format (sigh...) I am no friend with Excel
- ✓ *xlrd* is a great, multi-platform Python package to read Excel files
 - Fast as a rabbit faster than Excel itself
 - Works around many Excel bugs (especially datetime-related)

```
# Open the Excel file
book = xlrd.open workbook('example 1.xls')
# Get the first worksheet
sheet = book.sheet by index(0)
# Allocate an empty numpy array
values = numpy.zeros((sheet.nrows, 3))
# Loop over all the Excel sheet rows
for row in range(1, sheet.nrows):
    # Get the well name
    well name = sheet.cell(row, 0).value
    # Column B should be a date ...
    cell type = sheet.cell(row, 1).ctype
    cell value = sheet.cell(row, 1).value
    if cell type == xlrd.XL CELL DATE:
        # It's a date!
        date = xlrd.xldate as tuple(cell value, book.datemode)
        date = datetime.date(*date[0:3])
    # Store production data into a numpy array
    for col in range(3):
        values[row, col] = sheet.cell(row, col+2).value
```

- Smoothly handles different cell types (empty, text, number, boolean, etc...)
- ✓ Various Excel-errors handling (#REF!, #DIV/0!, #VALUE!, etc...)
- ✓ Info on cell fonts, formats, formulae
- ✓ It's the base of XLSGrid (an AGW widget in wxPython) ☺

Oily sample: xlrd_1.py

Number Crunching and I/O

Task of the day

- ✓ Quality check of the electrical measurements on a well (*logs*)
- ✓ Depth-based data at 15cm intervals (well length can be more than 10Km)
- ✓ Free format text file with variable-length headers
 - Data is organized in columns
- ✓ We only care about depth, rock property and water content
 - All other data is discarded
- ✓ Unphysical values must be filtered out (X < 0 or X > 1)
- ✓ Cleaned data is then exported in another format
 - 1. Keeping original depth intervals (15cm)
 - 2. Averaging rock property and water content every 6m

Number Crunching and I/O

🖫 TextPad - [C:\Users\AGA108\Desktop\PyAr\python\scientific\log.pm]	X
File Edit Search View Tools Macros Configure Window Help	×
# LAS format log file from PETREL # Project units are specified as depth units	7
#	=
~Version information	_
VERS. 2.0: URAP NO:	
#=====================================	
~Well	
STRT .ft 2823.0000000 :	
STOP.ft 25564.500000 : STEP.ft 0.50000000 :	
NULL999.250000 :	
COMP. : COMPANY	
WELL. WELL : WELL FLD. : FIELD	
LOC. IOCATION	
SRVC. SERVICE COMPANY	
DATE. Monday, August 06 2012 13:46:51 : DATE	
PROV. : PROVINCE UWI. : UNIQUE WELL ID	
API. API NUMBER	
#	
~Curve	
DEPT.ft : DEPTH BVW.RB/STB : BVW	
	Ŧ

	3	lext	Pad - [(C:\Users	AC	5A108	Desktop	\PyAr\pyt	hon\scientifi	c\log.pm]			~ ~
	ł	File	Edit	Search	1	View	Tools	Macros	Configure	Window	Help		₽×
			amet										
J													= ^
1		~Asc		00000	0	2220	000022	2 500	0000000	000 25	0000	12.810000420	
1							000032		00000000			12.810000420	_
ł							000032		00000000	-999 25		9.5500001907	
							000032		00000000	-999.25		10.140000343	- =
d		282	5.00	00000	Ō.	2229	000032	2.500	0000000	-999.25	0000	12.060000420	_
1		282	5.50	00000	Ο.	2229	000032		0000000	-999.25		10.550000191	-
1					-		000032		0000000	-999.25		10.550000191	-
I							000032		0000000	-999.25			-
i							000032		0000000	-999.25			-
							000032		00000000	-999.25		8.6724996567	_
							000032		00000000	-999.25		7.9175000191	_
1							000032		00000000	-999.25		7.5399999619	_
I							000032		00000000	-999.25		9.0500001907	_
							000032		0000000	-999.25		8.7700004578	-
		283	0.50	00000	Ο.	2229	000032	2.500	0000000	-999.25	0000	7.9899997711	-
1		283	1.00	00000	Ο.	2229	000032	2.500	0000000	-999.25		8.9200000763	-
ł							000032		0000000	-999.25		8.9200000763	-
							000032		0000000	-999.25		10.680000305	-
							000032		0000000	-999.25		11.239999771	-
							000032		0000000	-999.25		10.930000305	-
		283	3.50	00000	U.		000032		0000000	-999.25	0000	10.430000305	
5												The second secon	

Header

Data

Problem size and available resources

- ✓ 860 wells, 4.9 GB of data scattered over a network
- ✓ Python 2.7 on Windows Vista:
 - CPU @ 3.46 GHz, 64 bit architecture
 - 16 cores, 96 GB or RAM

Number Crunching and I/O – *numpy*

```
# We skip the first 43 rows of the text file
skip = 43
# Column 0 = Depth
# Column 8 = Rock property
# Column 13 = Water content
columns = (0, 8, 13)
# 1. Load the data using numpy.loadtxt
data = numpy.loadtxt('log.prn', skiprows=skip, usecols=columns)
```

```
# 2. Filter out the bad values for rock property
# and water content
rock_water = data[:, 1:]
rock_water[rock_water < 0] = -999
rock_water[rock_water > 1] = -999
data[:, 1:] = rock_water
# 3. Save the filtered data to a new file
numpy.savetxt('log_out.prn', data, fmt='%-15s')
```

```
# 4. Moving average every 20ft - 6m
# a. Set negative (default) values to NaN
averaged = numpy.where(data < 0, numpy.NaN, data)
# Pre-allocate a matrix for the averaged values
out_averaged = numpy.zeros((5, averaged.shape[1]))
for col in xrange(averaged.shape[1]):
    out_averaged[:, col] = moving_average(averaged[:, col], 40)
```

- ✓ *loadtxt* is very handy and fast
- ✓ Returns a 2D numpy array
- Supports a wide range of file formats by tweaking its keyword arguments
- ✓ Fast and intuitive operations on N-D arrays
- ✓ savetxt is as handy and as fast as loadtxt

 A moving average implementation is a 2-liner with *numpy*

Number Crunching and I/O – numpy

Final results and performances

- ✓ Looped through all the files in 6.5 minutes
- ✓ Can we do better?
 - Yes we can go parallel with the *multiprocessing* module
 - The task is easily parallelizable: one file at a time

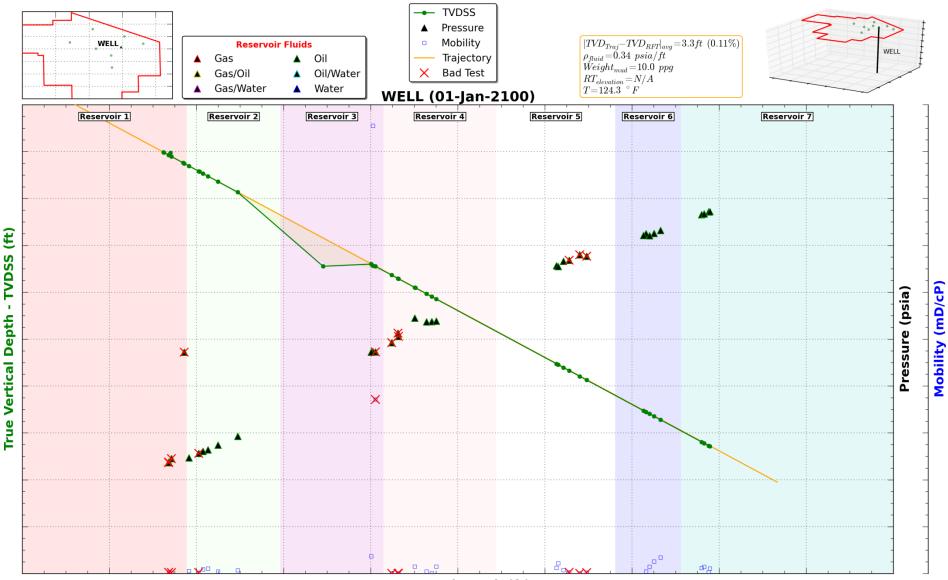
```
import numpy
from multiprocessing import Pool, cpu_count
# Start a multiprocessing pool of processes
# Use all the available CPUs
pool = Pool(processes=cpu_count())
# prn_files is a list of all the text files
# Apply the function to every text file
pool.map(read_log_file, prn_files)
```

- ✓ Windows is less suited to parallel stuff than other platforms (no *os.fork()*)
- ✓ Nevertheless, this approach gives stupendous speed gains
- ✓ If I am I/O-bound... I don't care

Number Crunching and I/O – *numpy*

OIL

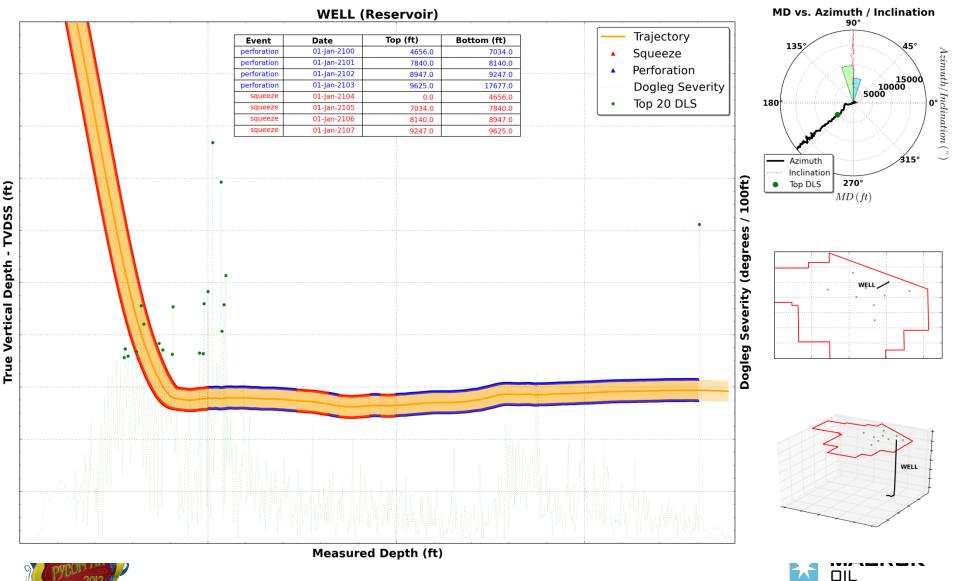
2D Visualizations


"A picture is worth a thousand words."

- ✓ We produce visualizations for every data type in our datasets
 - Visual inspection is a powerful solution to spot errors
 - Everyone in the team has a chance to analyze the data
 - Often provide new insights on how to better integrate the data
- ✓ The generated plots contain as much information as possible
- ✓ *matplotlib* is the Python package of choice
 - Almost limitless customizations of plots
 - Very high plot quality and wide range of plot types
 - Easy integration with GUI toolkits (*wxPython*, *Qt*, *PyGtk*, *TkInter*)

5

Measured Depth (ft)


- ✓ Multiple independent Y-axis
- Axis location, ticks, colors, labels, etc... can be tweaked
- *axisartist* supports curvilinear axis as well

Mail Oily sample: matplotlib_1.py

- ✓ axhspan adds a horizontal span (rectangle) across the axis
- *axvspan* is its vertical friend

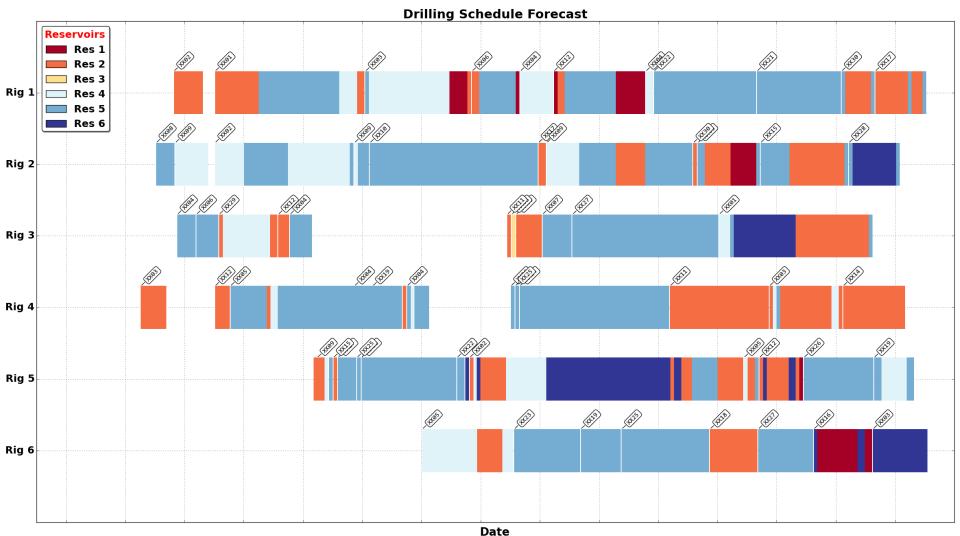
Oily sample: *matplotlib_2.py*


```
# Make a square figure
fig = plt.figure(figsize=(6, 6))
# Add polar axes
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
# Make some data up
r = numpy.arange(0, 3.0, 0.01)
theta = 2*numpy.pi*r
ax.plot(theta, r, color='#ee8d18', lw=3)
ax.set_rmax(2.0)
ax.grid(True)
```

 Tables are a useful addition to matplotlib plots

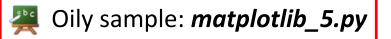
 Exact formatting, colors and font may sometimes be hard to get right

Oily sample: matplotlib_3.py


- Polar plots are not widely used in the oil industry
- They can be a great tool to analyze a well trajectory

Oily sample: *matplotlib_4.py*

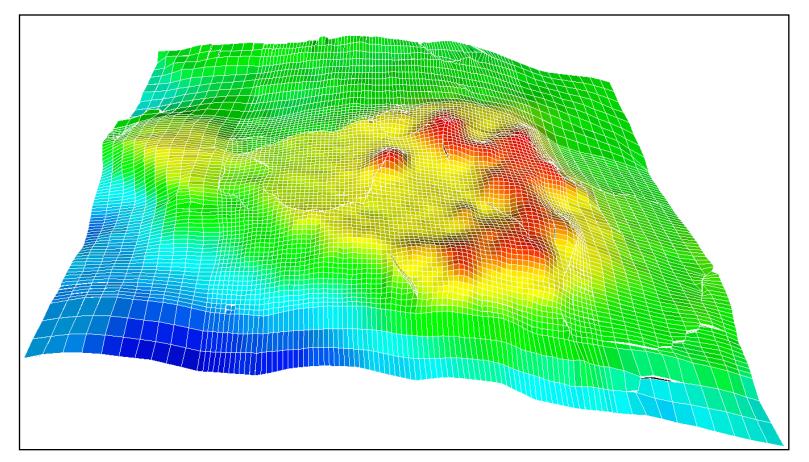
plt.show()




```
fig = plt.figure()
ax = fig.add subplot(111)
ax.broken barh([(110, 30), (150, 10)], (10, 9),
                 facecolors='blue')
ax.broken barh([(10, 50), (100, 20), (130, 10)], (20, 9),
                facecolors=('red', 'yellow', 'green'))
ax.set ylim(5, 35)
ax.set xlim(0, 200)
ax.set xlabel('Drilling Time (days)')
ax.set yticks([15, 25])
ax.set yticklabels(['Rig 1', 'Rig 2'])
ax.grid(True)
ax.annotate('Rig stopped', (61, 25),
            xytext=(0.6, 0.9), textcoords='axes fraction',
            arrowprops=dict(facecolor='black', shrink=0.05),
            fontsize=16, ha='right', va='top')
plt.show()
```

- broken_barh is the perfect tool to draw drilling schedules
- ✓ Similar plots can be obtained by using multiple calls to *ax.barh()*
- Axis annotations add useful info about the data being displayed

I'll use this occasion to remember John Hunter, the creator of *matplotlib* (1968-2012)


3D Visualizations

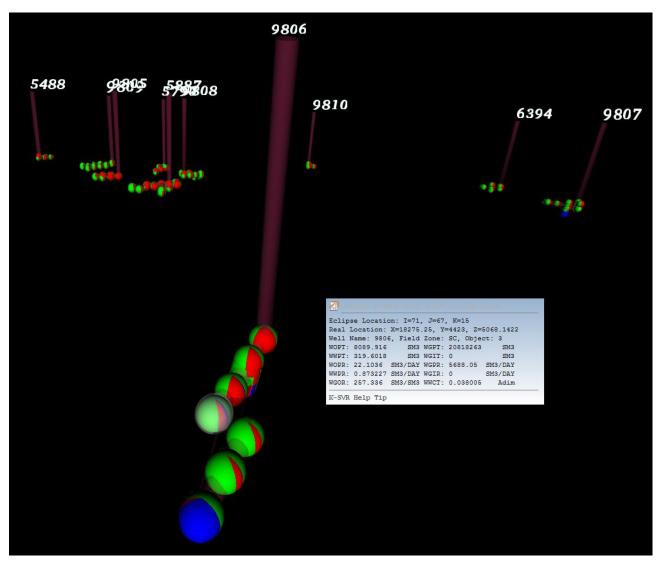
"There's something that 3D gives to the picture that takes you into another land and you stay there and it's a good place to be..."

- ✓ Most commercial software handle 3D stuff with no effort
- ✓ 3D visualization in Python is used only for specific, niche problems
 - Simulation results of well production at a specific depth
 - Double-checking input data for the simulation
 - Visualize a relationship between wells, area, reservoir and a project
- ✓ *VTK* and *mayavi* are the most widely used 3D rendering Python packages
 - Scale fairly well on big 3D datasets
 - *VTK* can easily be integrated in a GUI window (*wxPython*, *Qt*, *PyGtk*, etc...)
 - *VTK* figures can be saved as VRML files to let the colleagues play with them

- ✓ 3D reservoir model, 500,000 cells (VTK unstructured grid)
- \checkmark We easily go up to 10 million cells, interaction is still smooth

- ✓ VTK unstructured grids require explicit point and cell representations
- ✓ 3D Cells can be seen as distorted hexahedrons

```
# matrix is a (8*Nx*Ny*Nz, 3) 2D numpy array
vtk_pts = array2vtkPoints(matrix)
# Create vtk data
grid = vtk.vtkUnstructuredGrid()
grid.SetPoints(vtk_pts)
# Create cells
ids = numpy.arange(0, 8*nx*ny*nz, dtype=numpy.float32)
ids = numpy.reshape(ids, (nx*ny*nz, 8))
cells = array2vtkCellArray(ids)
# Assign cells to unstructured grid
grid.SetCells(12, cells)
# Actually create the unstructured grid
ugrid = vtk.vtkExtractUnstructuredGrid()
ugrid.SetInput(grid)
```


```
ugrid = ugrid.GetOutput()
ugrid.Update()
```

- Special techniques exists to handle very large datasets
- Coincident points can be merged (faster rendering)
- Highlighted functions are available in the array_handler.py module as part of the distributed samples
- ✓ These functions ease the transition between *numpy* arrays and *VTK* arrays

Qily sample: vtk_1.py

- Spheres identify a producing interval in a well
- ✓ Colors represent the produced fluid (oil, water, gas)
- Spherical slices shows the relative abundance of each fluid
- Each sphere can be "picked", i.e. selected with the mouse, to display more data
- ✓ Time based animation are possible


```
# x, y, z coordinates of a vell trajectory
points = numpy.array(points)
line = [range(len(points))]
```

```
# Create the vtk data for the trajectory
vtk_pts = array2vtkPoints(points)
vtk_lines = array2vtkCellArray(line)
```

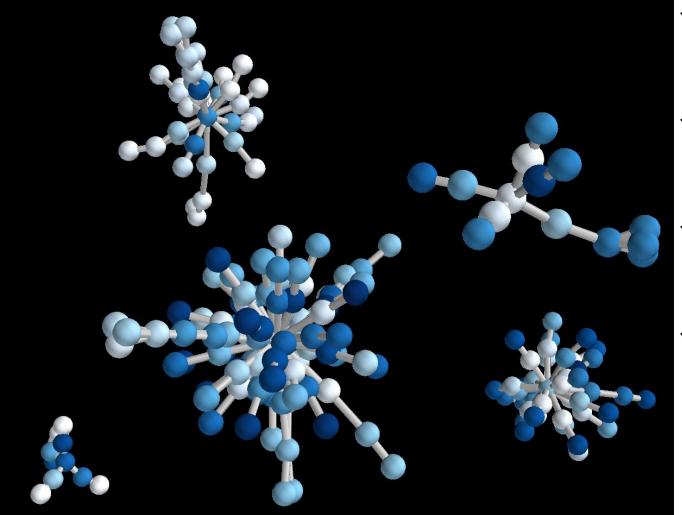
```
poly = vtk.vtkPolyData()
poly.SetPoints(vtk_pts)
poly.SetLines(vtk_lines)
```

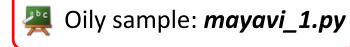
```
# A filter that generates tubes around lines
profileTubes = vtk.vtkTubeFilter()
# Set the tube radius and resolution
profileTubes.SetRadius(radius)
profileTubes.SetNumberOfSides(20)
profileTubes.SetInput(poly)
```

```
# Map vtkPolyData to graphics primitives
wellMapper = vtk.vtkPolyDataMapper()
wellMapper.SetInput(profileTubes.GetOutput())
```

```
# Create an "actor" for the vell
wellActor = vtk.vtkActor()
wellActor.SetMapper(wellMapper)
```

Create a caption "actor" for the vell name textActor = vtk.vtkCaptionActor2D() textActor.SetCaption(wellName)


- ✓ vtkPolyData can represent vertices, lines, polygons etc...
- ✓ vtkTubeFilter is a very good way to represent wells in a 3D space
- ✓ The well name caption "actor" follows the user view while she interacts with the VTK window
- Highlighted functions are available in the array_handler.py module as part of the distributed samples



3D Visualizations – *NetworkX and mayavi*

- Visualize relationships between wells, areas, reservoirs and projects
- Shows dependencies
 between wells and
 undeveloped areas
- ✓ 3D version of a
 GraphViz inheritance
 diagram
- Particularly useful when a project contains 1000s of wells

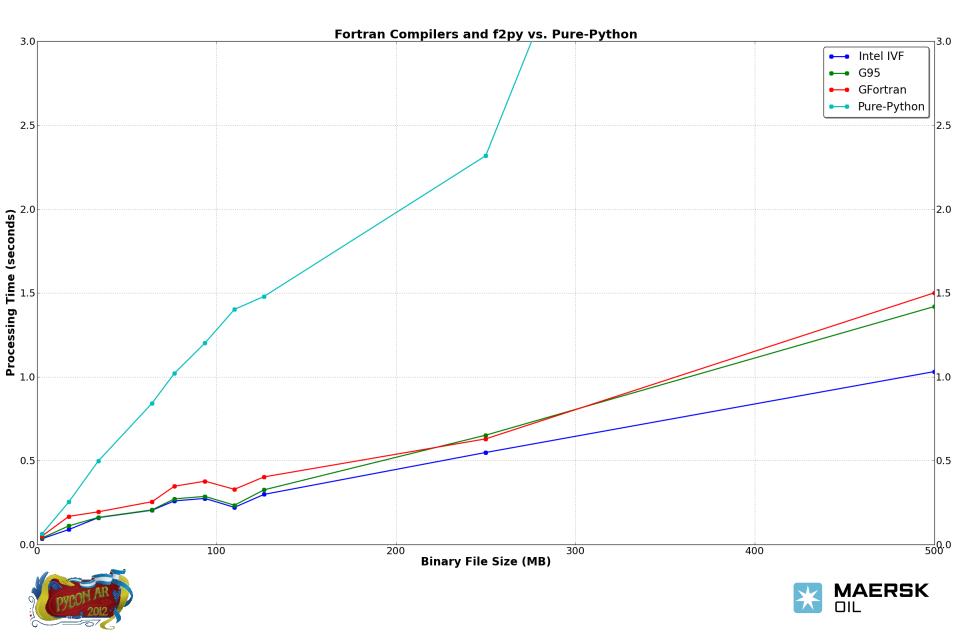
Integration with the Simulator

"Fast as a rabbit, dumb as a stone."

- ✓ The reservoir simulator can easily generate 100 GB of results per simulation
- ✓ Each result set is made of 5-8 interesting files
 - Results are stored in heavily compressed, unformatted binary files
 - These files are generated by a Fortran-based simulator
 - File structure is relatively simple and straightforward
- ✓ We can use Python to extract the simulation results from these files
 - Performances are generally poor (code is slow)
 - Does not scale well when files are big
- ✓ Can we write a small Fortran routine and interface it with Python to read these large, binary files?
 - Enter *f2py*

Integration with the Simulator – *f2py*

- ✓ Fortran to Python interface generator
- ✓ Connects the two languages:
 - Creates Python C/API modules from Fortran 77/90/95
 - Works directly on Fortran sources
 - Automatically handles the difference in the data storage order of multi-dimensional Fortran and *numpy* arrays
- Requires a Fortran compiler installed supports many major compilers, such as gfortran, Intel IVF, Absoft, NAG, etc...


f2py -c fortran_file.f90 -m py_module

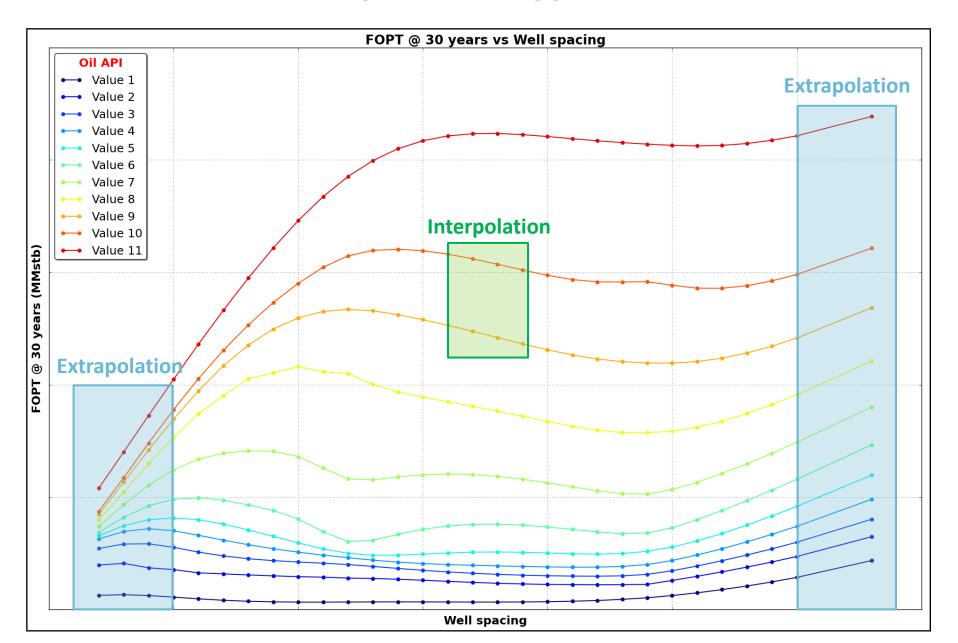
 ✓ Now every Fortran subroutine/function in *fortran_file.f90* is accessible in Python by importing *py_module*

Integration with the Simulator – *f2py*

Automation and N-D Interpolation

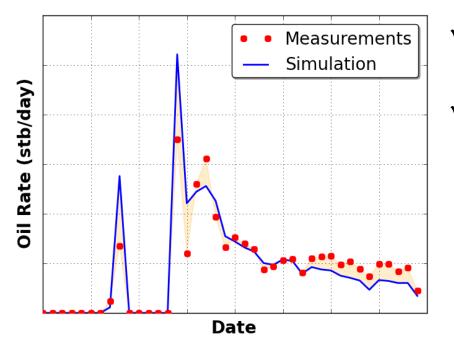
"Besides black art, there is only automation and mechanization."

Task of the day


- ✓ We have 16,000 new simulations available (sensitivities)
 - Each of them represents a unique combination of 13 parameters (oil gravity, rock properties, distance between wells etc...)
 - Simulation results could give insights on the numerical model sensitivity to the parameters variations
- ✓ The 13 parameters form a discrete set of known data points
- ✓ Use a *f2py*-generated module to read results from all the simulations
- ✓ Use interpolation to estimate results at intermediate values of the parameters
 - scipy offers multi-dimensional interpolation/extrapolation capabilities
 - *scipy.interpolate.rbf*: uses Radial Basis Function interpolation of N-dimensional scattered data

Automation and N-D Interpolation – scipy

"A picture is worth a thousand words. An interface is worth a thousand pictures."


- ✓ User interfaces are an obvious choice when it comes to sharing your findings with non-Pythonistas colleagues
- ✓ Although many high quality GUI frameworks are available...
- ✓ wxPython is *the* tool I use
 - Almost effortlessly integrate with *matplotlib* and VTK (2D and 3D)
 - Easy to build practical, responsive and sexy user interfaces
 - GUIs look (and are) native, whatever the platform
 - Number of widgets available far surpass all other toolkits
- ✓ Distribution to colleagues is done via *py2exe* / *PyInstaller* and *InnoSetup* to generate a standard Windows installer

Task of the week/month

✓ Create a GUI that evaluates the quality of a calibrated reservoir model

- Calibration is good when simulation results are close to measurements (shaded area)
 - Errors in the calibration are measured by different formulas such as:

$$Error = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \omega_i \left(\frac{s_i - o_i}{o_i}\right)^2}$$

✓ The GUI should allow the user to explore the numerical calculations and to quickly plot the simulation results against the measurements

Complications

- ✓ Number of data points: 17 years of historical measurements
- ✓ Number of wells and simulation time steps (thousands)
- ✓ The user would like to be able to:
 - Filter out values outside a user-defined date window (per well)
 - Apply a custom multiplier to some of the measurements
 - Exclude some values if a well has been closed for more than X days in a month
 - Modify the error function if a well has been using some gas to ease production
 - Many, many other customizations...
- ✓ The GUI puts together the power of *numpy*, *f2py*, *matplotlib*, *scipy*, *multiprocessing* and *wxPython* to deliver all that and much more ☺

HM_Evaluation v1.	1.8			_				N/R.3	undis Tulka	#15 organisti	West West	haanitaati							_ 0
Eile Options Ru	un Configuration	Interface	: <u>H</u> elp																
Vell Info	Input Da	ata																	
			y File (Productio	on Output):														Uptime Fi	ter (%)
Well 1		MMARY.SMS															Browse		cci (70).
Well 2	Pack C	Calculated E	une Ciler							CD AF File	(RFT Output):							Cumulatia	ve Filter (STB/I
Well 3		HP_Values.xls							Browse		:ts\HM_Evaluation						Browse	Cumulativ	e riter (STB/I
Well 4 Well 5									Drowse	c. (Hyrroja							Drowse		
Well 6			Images and Do	cuments:														Custom E	
🖌 🕹 Well 7		rojects\HM_E	Evaluation														Browse	7/1/	2011
🛛 🚽 🕹 Well 8 📑																			
Well 9	Sir	mulation	×																
▲ Well 11	HI 🗒 HI	4 Quality	🗙 💆 Well 7 Pro	ofiles ×	Well 7 Raw D	ata 🗙													
Well 12	Match	h Deviations									Match Quality								
Well 13			1							1	l later quarty	1							
Well 14	Wel	ls	WOPT	WGPT	WWPT	WBHP All Data	WOPR	WGPR	WWCT	Grade	Wells	WOPT	WGPT	WWPT	WBHP All Data	WOPR	WGPR	WWCT	Overall
📥 Well 15 🛗	Wel	11									Well 1	-							
Well 17	Wel		100%	100%	100%	1095	100%	100%	55%	6.95	Well 2	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Poor
Well 18	Wel										Well 3								
Well 19	Wel										Well 4								
Well 20	Wel										Well 5 Well 6								
Well 21	Wal		8%	8%		51	11%	11%	5%	0.87	Well 7	Fair	Good		Good	Fair	Good	Fair	Good
🍐 Well 22 🛗	Wel		0%	14%	22%	84		1170	4%	0.98	Well 8	Good	Good	Poor	Good	Fair	0000	Good	Good
Well 23	Wel		11%			57	4%		2%	1.10	Well 9	Poor			Good	Good		Good	Fair
Well 24	Wel		3%	4%	21%	114			4%	0.85	Well 10	Good	Good	Poor	Fair	Good		Good	Good
Well 25	Wel		6%	0%	10%	98			4%	0.96	Well 11	Fair	Good	Good	Fair	Fair		Good	Good
Well 26	Wel		16% 18%	16% 29%	200/	510 104	23% 11%	19%	23% 6%	2.27	Well 12	Poor	Fair	Deen	Poor Fair	Poor Fair	Good	Poor Fair	Poor Fair
Well 28	Wel		5%	14%	28% 46%	104	11%	14%	17%	1.37	Well 13 Well 14	Poor Good	Poor Good	Poor Poor	Fair	Fair	Good	Poor	Fair
📥 Well 28			8%	10%	32%	84		1170	5%	1.19	Well 15	Fair	Good	Poor	Good	Fair	0000	Good	Fair
	Wel		0%	25%	48%	128	8%	11%	5%	1.24	Well 16	Good	Poor	Poor	Fair	Good	Good	Fair	Fair
	Wel		5%	10%	7%	128		33%	5%	1.02	Well 17	Good	Good	Good	Fair	Fair	Fair	Fair	Fair
	Wel		10%	8%	14%	129	8%	4%	2%	0.98	Well 18	Fair	Good	Fair	Fair	Good	Good	Good	Good
	Wel										Well 19 Well 20								
	Wei										Well 20 Well 21								
	Wel		9%	15%	28%	61	7%	17%	4%	1.04	Well 22	Fair	Good	Poor	Good	Good	Good	Good	Fair
	Wel		10%	28%	62%		14%	30%	12%	2.00	Well 23	Fair	Poor	Poor		Fair	Good	Poor	Fair
	Wel		4%	4%		52	6%		7%	0.63	Well 24	Good	Good		Good	Good		Fair	Good
	Wel		7% 25%	15% 10%	41%	102	22% 19%		5% 3%	1.57	Well 25 Well 26	Fair Poor	Good Good	Poor	Fair	Poor Fair		Fair Good	Fair Fair
	Wel		31%	28%		37		31%	12%	1.95	Well 26	Poor	Poor		Good	Poor	Fair	Poor	Fair
	Wel		33%	13%		227	35%	15%	6%	2.18	Well 28	Poor	Good		Poor	Poor	Good	Fair	Poor
	Wel	129				52				0.62	Well 29				Good				Good
		Dav	15%	18%	35%	173	18%	26%	9%	1.58		WOPT	WGPT	WWPT	WBHP	WOPR	WGPR	WWCT	
	Avg) Dev de	Poor 15%	18% Fair	Poor 35%	Poor 173	18% Fair	Good 26%	9% Fair	1.58	Good	5%	15%	10%	WBHP 85	10%	30%	5%	
	Grad										Fair	10%	20%	20%	170	20%	40%	10%	
	(*) Va	alues come fi	rom the 'Back-Cald	culated BHPs File	e". Not included	in the grading.													
											Good	30%	68%	15%	42%	30%	73%	40%	33%
											Fair	35%	5%	8%	42%	45%	18%	35%	52%
sages & Actions																			
	Evaluation Messa	ages																	🛞 Dr
		-	ctly																
11.30.31 Prou	acaon results prot	ion results processed correctly																	
																			_
	- <u>Sk</u> K																		
mputer Name: WCI	VCPH00216, User Logon: aga108 Thursday, 11 October 2012 @ 11:37:48 RAM: 0 Mb CPU: 8%																		
			_		_			_	_				_	_	_	_			

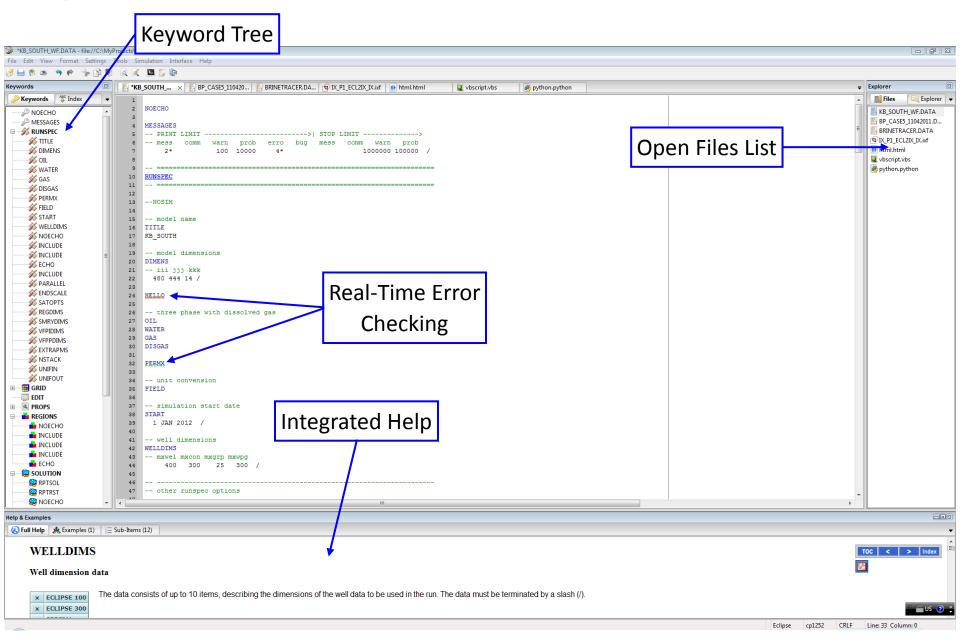
Final outcome

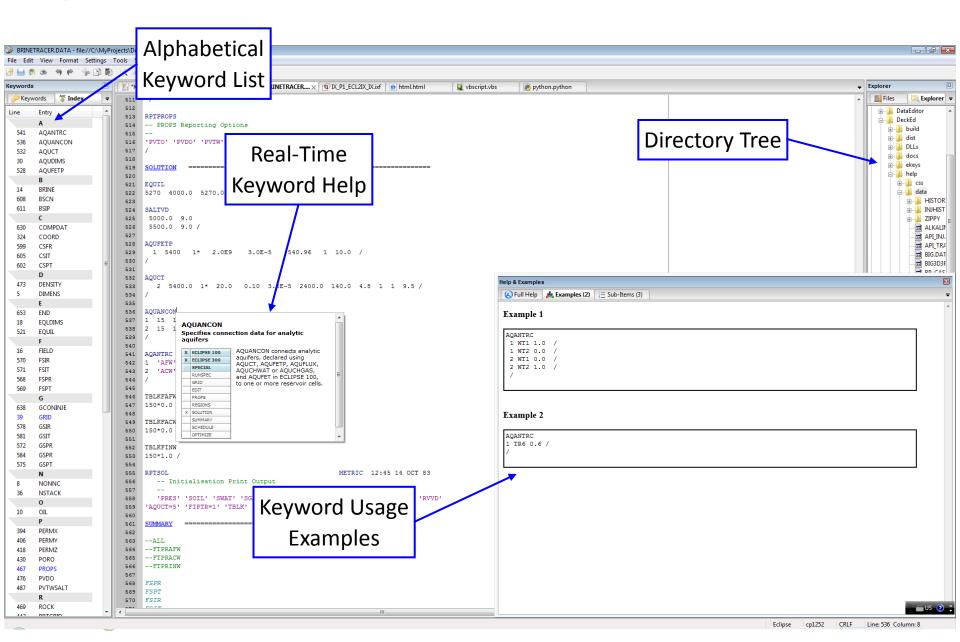
- ✓ We have a fast, practical and nice GUI to examine the quality of model calibration
- ✓ Colleagues can independently run the GUI and examine the results
- ✓ Multiple simulations can be analyzed and compared
- ✓ The interface automagically exports *matplotlib* figures for all the wells and Excel reports (and it does it on multiple processors...)
 - Findings and insights can easily be shared outside the team
 - Consistent, fixed (and beautiful) format for pictures in reports and documents
- \checkmark We have the source code \odot any modification is embarrassingly fast

• HM_Evaluation v1.1.8												
Eile Options Run Configuration Interface Help												
Well Info	Input Data											
🕬 Available Wells	ECLIPSE Summary File (Production Output):			Uptime Filter (%):								
₩ <i>ell 1</i>	MY_SUMMARY.SMSPEC			Browse 80								
Well 3	Back-Calculated BHPs File:	GRAF File (RFT Output)		Cumulative Filter (STB/MSCF):								
	BHP_THP_Values.xls	Browse C: \MyProjects \HM_Evalua	ation	Browse 1,000								
Well 5 Well 6	Output Folder for Images and Documents:			Custom End Date:								
★∳⁄3 Well 7 ★ ▲ Well 8 📆	c:\/MyProjects\/HM_Evaluation			Browse 7/ 1/2011								
★ ▲ Well 8 📆	Simulation X			-								
🛨 📥 Well 10	HM Quality X Well 7 Profiles X Well 7 Raw Data X			-								
★ Well 11 ★ Well 12		Well 7 Cas production sumulative	Well 7 Water production cumulative	Well 7 Bottom hole pressure								
★ ₩ell 13 ★ ₩ell 14	Well 7 Oil production cumulative	Well 7 Gas production cumulative	well / water production cumulative	well 7 Bottom nole pressure								
🗙 🔸 Well 14	Good	Good	Poor	Good								
★ Well 15 15 ★ Well 16												
🕇 🛨 🍐 Well 17	192											
★ Well 18 Well 19	e (S	e (S										
Well 20	Volume (STB)	<u> </u>	<u> </u>									
Well 21	8		(Fish)									
★ ▲ Well 22 📆 ★			Pressure	. /								
\star 🛶 🍫 Well 24	oduc	oduc -	Les .									
* Well 25	La	• Pro		······								
★ Well 26 ★ Well 27	Liquid Production Volume (STB	iduid Production Volume (518)	/ · · · ·									
🗙 🛁 🖕 📩 Well 28		· · · · · · · · · · · · · · · · · · ·										
★ 🦾 😼 Well 29 📆			∕.*									
	Well 7 Oil production rate	Well 7 Gas production rate	Well 7 Water cut	HM Quality Summary								
	Fair		Good									
			Good	····••••••••••••••••••••••••••••••••••								
	19/8	{										
	Liquid Flowrate (STB/d)	Water Cut (-)	Fair									
	MOL I	ate	/··									
	ig .		Λ									
	•											
			Poor	•••••								
			•									
	• • • • • • • • • • • • • • • • • • • •											
	WOPE WERE WOPE WHE WOPE WHE CORDIN											
	🏠 🛇 🚯 🕂 🧉 👼 🔚											
: P												
Computer Name: WCPH002	16, User Logon: aga108	Thursday, 11 Octobe	er 2012 @ 11:32:01	RAM: 0 Mb CPU: 9%								

Task of the week/month

- ✓ The reservoir simulator we use is called ECLIPSE
 - It's keyword-based you enter inputs in a text file with keywords and sub-keywords
 - 1983: first release of ECLIPSE (ECL's Implicit Program for Simulation Engineering)
 - ECLIPSE currently handles ≈1,600 keywords
 - On average, each keyword has 3 switches/sub-keywords (≈4,200 in total)
 - No editor with syntax highlighting, error checking capabilities and integrated help system exists for the input files (after 30 years!!)
- ✓ How about a *wxPython*-based editor with all these capabilities?
 - The *wx.StyledTextCtrl* (Scintilla-based) already provides excellent syntax highlighting for various programming languages
 - *wxPython* 2.9 contains powerful HTML viewing capabilities (via *wx.html2* module)
 - The ECLIPSE input files syntax is very similar to the programming language Lua




Another GUI: DeckEd

- ✓ *DeckEd* is a text editor based on *wx.StyledTextCtrl*
- ✓ Syntax highlighting for the reservoir simulator ECLIPSE and more than 60 other programming languages (Python, C++, Java, HTML, PHP, Ruby, etc...)
- ✓ Integrated help for the reservoir simulator keywords and sub-keywords
- ✓ Runtime monitoring of simulation status and progress
- ✓ Runtime error checking for ECLIPSE input files keywords
- Plugin-based architecture you can add a Python debugger, a spell checker, a code browser, etc...

Conclusions

- Many, many more examples of the usage of Python in the oil industry that I couldn't show
- ✓ Python is becoming increasingly popular amongst reservoir engineers
 - Automation improves working effectiveness a hundredfold
 - Beauty and elegance of the language easy to grasp even for newcomers
- ✓ Third-party packages add great value to the standard library:
 - *matplotlib* plot customization and unbeatable figure quality
 - *numpy* and *scipy* fast numerical manipulation of multi-dimensional arrays
 - *f2py* when you need Fortran raw speed with Python elegance
 - *VTK* and *mayavi* scalable 3D visualization
 - *wxPython* the glue to keep all the above together in a nice, point-and-click GUI
- Presentation samples: <u>http://www.infinity77.net/pycon/oily.zip</u>

Questions?

Comments?

