
Oily Python: a Reservoir Engineering Perspective

PyAr – November 17, 2012

Andrea Gavana
Maersk Oil

andrea.gavana@gmail.com
andrea.gavana@maerskoil.com

mailto:andrea.gavana@gmail.com
mailto:andrea.gavana@maerskoil.com

Outline

 What reservoir engineers do

 Data pre-processing and number crunching – xlrd and numpy

 2D visualizations – matplotlib

 3D visualizations – VTK, mayavi and NetworkX

 Integration with the reservoir numerical simulator – f2py

 Automation and N-D interpolation – Python and scipy

 Graphical user interfaces (GUIs) – wxPython

Presentation samples: http://www.infinity77.net/pycon/oily.zip

http://www.infinity77.net/pycon/oily.zip

What We Do

 Using all sorts of real-life measurements:

• Man-made seismic waves

• Detailed record of the geologic formations penetrated by a well (logs)

• Rock properties, oil/water/gas content in the reservoir rock

• Pressure/temperature vs. depth in a well

• Oil/water/gas production rates measured at the well

• … and many others …

 A reservoir engineer:

• Builds a 3D numerical model representing the reservoir and runs time-dependent
fluid flow simulations

• Tries to calibrate that model, i.e., match the simulated results with the real data

• Using the calibrated model, tries to predict the future performances of the field

What We Do – Complications

1 – 10 Km
50 – 60 Km 20 – 100 GB

 Located underground: we can’t go and see what’s in there

 Sheer areal size – hard to accurately model numerically

 Huge amount of data to pre-process and integrate

 Each simulation can easily generate 100 GB of results to analyze

Data Pre-Processing

“When fed with garbage data, a simulator is a machine that calculates meaningless

results with incredible precision.”

 A big part of the job is to ensure that the input data makes sense

• Measurements come from many, unrelated sources

• Data frequency – both in time and depth – varies wildly

• Deep and thorough data checking needs to be carried out

 Dense visual representations of the input data are fundamental

• Nothing beats seeing an image of your data to spot errors

• Automatic filters and data adjustments (via Python code) are inherently limited

 Cleaned, sensible data can then be used to feed the simulation

• One possible source of errors has been removed

Data Pre-Processing – xlrd

 Part of the data comes in Excel format (sigh…) – I am no friend with Excel

 xlrd is a great, multi-platform Python package to read Excel files

• Fast as a rabbit – faster than Excel itself

• Works around many Excel bugs (especially datetime-related)

 Smoothly handles different cell types

(empty, text, number, boolean, etc…)

 Various Excel-errors handling (#REF!,

#DIV/0!, #VALUE!, etc…)

 Info on cell fonts, formats, formulae

 It’s the base of XLSGrid (an AGW

widget in wxPython)

Oily sample: xlrd_1.py

Number Crunching and I/O

Task of the day

 Quality check of the electrical measurements on a well (logs)

 Depth-based data at 15cm intervals (well length can be more than 10Km)

 Free format text file with variable-length headers

• Data is organized in columns

 We only care about depth, rock property and water content

• All other data is discarded

 Unphysical values must be filtered out (X < 0 or X > 1)

 Cleaned data is then exported in another format

1. Keeping original depth intervals (15cm)

2. Averaging rock property and water content every 6m

Number Crunching and I/O

Problem size and available resources

 860 wells, 4.9 GB of data scattered over a network

 Python 2.7 on Windows Vista:

• CPU @ 3.46 GHz, 64 bit architecture

• 16 cores, 96 GB or RAM

Header Data

Oily sample: numpy_1.py

Number Crunching and I/O – numpy

 loadtxt is very handy and fast

 Returns a 2D numpy array

 Supports a wide range of file

formats by tweaking its keyword

arguments

 Fast and intuitive operations on N-D

arrays

 savetxt is as handy and as fast as

loadtxt

 A moving average implementation is

a 2-liner with numpy

Number Crunching and I/O – numpy

Final results and performances

 Looped through all the files in 6.5 minutes

 Can we do better?

• Yes we can – go parallel with the multiprocessing module

• The task is easily parallelizable: one file at a time

 Windows is less suited to parallel stuff than

other platforms (no os.fork())

 Nevertheless, this approach gives stupendous

speed gains

 If I am I/O-bound… I don’t care

Number Crunching and I/O – numpy

2D Visualizations

“A picture is worth a thousand words.”

 We produce visualizations for every data type in our datasets

• Visual inspection is a powerful solution to spot errors

• Everyone in the team has a chance to analyze the data

• Often provide new insights on how to better integrate the data

 The generated plots contain as much information as possible

 matplotlib is the Python package of choice

• Almost limitless customizations of plots

• Very high plot quality and wide range of plot types

• Easy integration with GUI toolkits (wxPython, Qt, PyGtk, TkInter)

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 Multiple independent Y-axis

 Axis location, ticks, colors, labels, etc… can

be tweaked

 axisartist supports curvilinear axis as well

Oily sample: matplotlib_1.py

 axhspan adds a horizontal span (rectangle)

across the axis

 axvspan is its vertical friend

Oily sample: matplotlib_2.py

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 Tables are a useful addition to

matplotlib plots

 Exact formatting, colors and font

may sometimes be hard to get

right

Oily sample: matplotlib_3.py

 Polar plots are not widely used in

the oil industry

 They can be a great tool to analyze

a well trajectory

Oily sample: matplotlib_4.py

2D Visualizations – matplotlib

2D Visualizations – matplotlib

 broken_barh is the perfect tool to

draw drilling schedules

 Similar plots can be obtained by

using multiple calls to ax.barh()

 Axis annotations add useful info

about the data being displayed

Oily sample: matplotlib_5.py

I’ll use this occasion to remember John Hunter, the creator of matplotlib

(1968-2012)

3D Visualizations

“There's something that 3D gives to the picture that takes you into another land and

you stay there and it's a good place to be...”

 Most commercial software handle 3D stuff with no effort

 3D visualization in Python is used only for specific, niche problems

• Simulation results of well production at a specific depth

• Double-checking input data for the simulation

• Visualize a relationship between wells, area, reservoir and a project

 VTK and mayavi are the most widely used 3D rendering Python packages

• Scale fairly well on big 3D datasets

• VTK can easily be integrated in a GUI window (wxPython, Qt, PyGtk, etc…)

• VTK figures can be saved as VRML files to let the colleagues play with them

3D Visualizations – VTK

 3D reservoir model, 500,000 cells (VTK unstructured grid)

 We easily go up to 10 million cells, interaction is still smooth

3D Visualizations – VTK

 VTK unstructured grids require explicit point and cell representations

 3D Cells can be seen as distorted hexahedrons

 Special techniques exists to handle very

large datasets

 Coincident points can be merged (faster

rendering)

 Highlighted functions are available in the

array_handler.py module as part of the

distributed samples

 These functions ease the transition

between numpy arrays and VTK arrays

Oily sample: vtk_1.py

3D Visualizations – VTK

 Spheres identify a

producing interval in a

well

 Colors represent the

produced fluid (oil,

water, gas)

 Spherical slices shows

the relative abundance

of each fluid

 Each sphere can be

“picked”, i.e. selected

with the mouse, to

display more data

 Time based animation

are possible

3D Visualizations – VTK

 vtkPolyData can represent vertices, lines,

polygons etc…

 vtkTubeFilter is a very good way to

represent wells in a 3D space

 The well name caption “actor” follows the

user view while she interacts with the VTK

window

 Highlighted functions are available in the

array_handler.py module as part of the

distributed samples

Oily sample: vtk_2.py

3D Visualizations – NetworkX and mayavi

 Visualize relationships

between wells, areas,

reservoirs and projects

 Shows dependencies

between wells and

undeveloped areas

 3D version of a

GraphViz inheritance

diagram

 Particularly useful

when a project

contains 1000s of wells

Oily sample: mayavi_1.py

Integration with the Simulator

“Fast as a rabbit, dumb as a stone.”

 The reservoir simulator can easily generate 100 GB of results per simulation

 Each result set is made of 5-8 interesting files

• Results are stored in heavily compressed, unformatted binary files

• These files are generated by a Fortran-based simulator

• File structure is relatively simple and straightforward

 We can use Python to extract the simulation results from these files

• Performances are generally poor (code is slow)

• Does not scale well when files are big

 Can we write a small Fortran routine and interface it with Python to read these

large, binary files?

• Enter f2py

Integration with the Simulator – f2py

 Fortran to Python interface generator

 Connects the two languages:

• Creates Python C/API modules from Fortran 77/90/95

• Works directly on Fortran sources

• Automatically handles the difference in the data storage order of multi-dimensional

Fortran and numpy arrays

 Requires a Fortran compiler installed – supports many major compilers, such as

gfortran, Intel IVF, Absoft, NAG, etc…

f2py -c fortran_file.f90 -m py_module

 Now every Fortran subroutine/function in fortran_file.f90 is accessible in Python

by importing py_module

Integration with the Simulator – f2py

Automation and N-D Interpolation

“Besides black art, there is only automation and mechanization.”

Task of the day

 We have 16,000 new simulations available (sensitivities)

• Each of them represents a unique combination of 13 parameters (oil gravity, rock

properties, distance between wells etc…)

• Simulation results could give insights on the numerical model sensitivity to the

parameters variations

 The 13 parameters form a discrete set of known data points

 Use a f2py-generated module to read results from all the simulations

 Use interpolation to estimate results at intermediate values of the parameters

• scipy offers multi-dimensional interpolation/extrapolation capabilities

• scipy.interpolate.rbf: uses Radial Basis Function interpolation of N-dimensional

scattered data

Oily sample: scipy_1.py

Automation and N-D Interpolation – scipy

Interpolation

Extrapolation

Extrapolation

Graphical User Interfaces

“A picture is worth a thousand words. An interface is worth a thousand pictures.”

 User interfaces are an obvious choice when it comes to sharing your findings

with non-Pythonistas colleagues

 Although many high quality GUI frameworks are available…

 wxPython is *the* tool I use

• Almost effortlessly integrate with matplotlib and VTK (2D and 3D)

• Easy to build practical, responsive and sexy user interfaces

• GUIs look (and are) native, whatever the platform

• Number of widgets available far surpass all other toolkits

 Distribution to colleagues is done via py2exe / PyInstaller and InnoSetup to

generate a standard Windows installer

Graphical User Interfaces

Task of the week/month

 Create a GUI that evaluates the quality of a calibrated reservoir model

 Calibration is good when simulation results

are close to measurements (shaded area)

 Errors in the calibration are measured by

different formulas such as:

 The GUI should allow the user to explore the numerical calculations and to

quickly plot the simulation results against the measurements

Graphical User Interfaces

Complications

 Number of data points: 17 years of historical measurements

 Number of wells and simulation time steps (thousands)

 The user would like to be able to:

• Filter out values outside a user-defined date window (per well)

• Apply a custom multiplier to some of the measurements

• Exclude some values if a well has been closed for more than X days in a month

• Modify the error function if a well has been using some gas to ease production

• Many, many other customizations…

 The GUI puts together the power of numpy, f2py, matplotlib, scipy,

multiprocessing and wxPython to deliver all that and much more

Graphical User Interfaces

Graphical User Interfaces

Final outcome

 We have a fast, practical and nice GUI to examine the quality of model

calibration

 Colleagues can independently run the GUI and examine the results

 Multiple simulations can be analyzed and compared

 The interface automagically exports matplotlib figures for all the wells and Excel

reports (and it does it on multiple processors…)

• Findings and insights can easily be shared outside the team

• Consistent, fixed (and beautiful) format for pictures in reports and documents

 We have the source code – any modification is embarrassingly fast

Graphical User Interfaces

Graphical User Interfaces

Task of the week/month

 The reservoir simulator we use is called ECLIPSE

• It’s keyword-based – you enter inputs in a text file with keywords and sub-keywords

• 1983: first release of ECLIPSE (ECL’s Implicit Program for Simulation Engineering)

• ECLIPSE currently handles ≈1,600 keywords

• On average, each keyword has 3 switches/sub-keywords (≈4,200 in total)

• No editor with syntax highlighting, error checking capabilities and integrated help

system exists for the input files (after 30 years!!)

 How about a wxPython-based editor with all these capabilities?

• The wx.StyledTextCtrl (Scintilla-based) already provides excellent syntax highlighting

for various programming languages

• wxPython 2.9 contains powerful HTML viewing capabilities (via wx.html2 module)

• The ECLIPSE input files syntax is very similar to the programming language Lua

Graphical User Interfaces

Another GUI: DeckEd

 DeckEd is a text editor based on wx.StyledTextCtrl

 Syntax highlighting for the reservoir simulator ECLIPSE and more than 60 other

programming languages (Python, C++, Java, HTML, PHP, Ruby, etc…)

 Integrated help for the reservoir simulator keywords and sub-keywords

 Runtime monitoring of simulation status and progress

 Runtime error checking for ECLIPSE input files keywords

 Plugin-based architecture – you can add a Python debugger, a spell checker, a

code browser, etc…

Graphical User Interfaces

Keyword Tree

Real-Time Error

Checking

Open Files List

Integrated Help

Graphical User Interfaces

Directory Tree

Alphabetical

Keyword List

Real-Time

Keyword Help

Keyword Usage

Examples

Conclusions

 Many, many more examples of the usage of Python in the oil industry that I
couldn’t show

 Python is becoming increasingly popular amongst reservoir engineers

• Automation improves working effectiveness a hundredfold

• Beauty and elegance of the language – easy to grasp even for newcomers

 Third-party packages add great value to the standard library:

• matplotlib – plot customization and unbeatable figure quality

• numpy and scipy – fast numerical manipulation of multi-dimensional arrays

• f2py – when you need Fortran raw speed with Python elegance

• VTK and mayavi – scalable 3D visualization

• wxPython – the glue to keep all the above together in a nice, point-and-click GUI

 Presentation samples: http://www.infinity77.net/pycon/oily.zip

http://www.infinity77.net/pycon/oily.zip

Thank You

Questions?

Comments?

