
“import wx”: a Tale of Never-ending GUI Power

PyAr – November 16, 2012

Andrea Gavana
Maersk Oil

andrea.gavana@gmail.com
andrea.gavana@maerskoil.com

mailto:andrea.gavana@gmail.com
mailto:andrea.gavana@maerskoil.com

Outline

 Introduction

 wxPython architecture and package structures

 How-Tos:

• Windows layout management

• wxPython with threads and multiprocessing

• Persisting GUI states

 AGW library and owner-drawn controls

 Lessons learned

 wxPython with Python 3

Presentation samples: http://www.infinity77.net/pycon/wxPython.zip

http://www.infinity77.net/pycon/wxPython.zip

Introduction

 wxPython is a GUI toolkit for Python, built on the wxWidgets C++ framework

 Designed to be cross-platform, supports Windows, Linux, Unix and Mac

 Uses native widgets wherever possible

 Extensive library of examples, wonderful community

 wxWidgets (1992) and wxPython (1996) are mature and robust projects

 The next generation of wxPython (Phoenix) is almost a reality

Phoenix

Why wxPython?

 Native look and feel on all platforms

 Vast number of widgets (native and owner-drawn)

 Permissive license

 Fast evolving pace and excellent maintenance

 “The only reason wxPython isn't the standard Python GUI toolkit is that TkInter

was there first.” (Guido van Rossum) 

Choice is hard for newcomers:

 High quality alternatives (PyQt, PySide, PyGtk, TkInter)

 Try them all, choose The One

Architecture

Operating System

wxWidgets

 Platform GUI

wxPython Extension Modules

wxPython Library

Proxy classes

Architecture

Core Classes

BitmapButton
…

ListCtrl
…

Window

100 Widgets
≈ 46 kLOC

Wrapped Sub-Modules

animate dataview … propgrid

AnimationCtrl DataViewCtrl
DataViewTreeCtrl
DataViewListCtrl

…

PropertyGrid
PropertyGridManager

…

18 Modules, 50 Widgets
≈ 32 kLOC

wx.lib

agw

floatcanvas

…

pubsub

AdvancedSplash
…

ZoomBar
…

FloatCanvas
…

NavCanvas

Publisher ActiveXCtrl
…

FlashWindow
…

Ticker

323 Modules
≈ 160 Widgets

≈ 225 kLOC

Architecture

Top-level (floating)
windows

Partial class structure

Windows Layout Management

Layout management: describes how widgets are laid out in an application's user

interface

 wxPython provides a few alternatives:

• Absolute positioning (brute force): don’t. No, really, don’t

• Sizers: very powerful, not so simple at the beginning, but worth the effort

• SizedControls: add-on library to help simplify the creation of sizer-based layouts

• AUI (Advanced User Interface): docking windows and automatic layout management

 My recommendation is to use sizers and AUI, depending on the layout you wish

to build:

• Use sizers for sub-windows layout or complex/nested layouts

• Try AUI for the main application windows

Windows Layout Management – Sizers

 Similar to LayoutManagers in Java

 All items (widgets or nested sizers) added to a sizer are laid out by a specific

algorithm

 Relationships defined by containment within sizers or nested sizers

 An item’s position within its allotted space is also controllable:

• Empty space on borders

• Alignment

 You need to be able to think visually both top-down and bottom-up to capture

your design

Windows Layout Management – Sizers

wxPython sample: sizers.py

Windows Layout Management – AUI

AUI is an advanced layout mechanism you can use to quickly build high-quality,

cross platform user interfaces. AUI provides:

 Native, dockable floating frames

 Perspective saving and loading

 Native toolbars incorporating real-time, "spring-loaded" dragging

 Customizable floating/docking behaviour

 Completely customizable look-and-feel

 Optional transparent window effects (while dragging or docking)

 Splittable notebook control

Available as a wrapped sub-module (in wx.aui) or as pure-Python implementation

(in wx.lib.agw.aui)

Windows Layout Management – AUI

wxPython sample: aui.py

Windows Layout Management – AUI

 In addition to layout management, you get fancy docking/floating windows

 Trust me when I say you can get quite impressive layouts…

Windows Layout Management – AUI

Parallel wxPython

Playing nice with threads or parallel processes…

 wxPython widgets are not (easily) pickleable:

• multiprocessing will complain

• Child processes can not directly interact with the main process

 GUI-related methods/functions are not thread-safe:

• Separate threads can not directly call GUI methods

• The GIL is usually not your friend 

Different alternatives for handling threads:

• wx.CallAfter

• wx.PostEvent

• Using pubsub

Parallel wxPython – Threads

 GUI remains responsive

 Similar strategy can be

implemented via

wx.PostEvent or pubsub

wxPython samples:

threads_1.py

threads_2.py

Parallel wxPython – Processes

Multiple concurrent processes:

• Start a separate monitoring thread

• Start the processes from the thread

• Use wx.CallAfter, wx.PostEvent or pubsub in the thread to communicate with your GUI

 GUI remains responsive

 You can use

multiprocessing.apply_async

as well

wxPython sample:

process_1.py

Parallel wxPython – Processes

Single separate process:

• Used to monitor an external applications (for example)

• Particularly useful to monitor stdout and stderr

• Use wx.Process and wx.Execute to run the separate process

 GUI remains responsive

 cmd can be any process

you can start on your

machine

wxPython sample:

process_2.py

Persisting GUIs State

Persistent GUIs automatically save their state when they are destroyed and restore

it when they are recreated, even during another program invocation.

wx.lib.agw.persist is a package that does all the work for you:

 PersistenceManager which all persistent widgets register themselves with

 PersistentObject is the base class for all persistent controls

 PersistentHandlers which handle different kind of saving/restoring actions depending on

the widget type

Persistent states include:

 Windows position, size and (AUI) layouts

 Text control values
 Radiobutton selections
 Tree controls expansion state
 List controls selections, column widths etc…

The persist framework handles more than 100 different widgets

Persisting GUIs State

Set unique window name

Register the window and

restore its previous state

(if any)

Save window state and

unregister

Persisting GUIs State

 You can set your own config file

where states are saved

 States can be saved in cPickle,

ConfigObj, wx.Config (and many

other) formats

 PersistentControls supports all the native widgets and almost all the owner-drawn

ones

 Notable exception is wx.grid.Grid

wxPython samples:

persist_1.py

persist_2.py

Owner-Drawn Controls

Custom control does not mean owner-drawn:

 A custom widget may extend the functionalities of the native one without the

need of being owner-drawn

 Owner-drawn widgets are much more flexible (look and feel, behavior)

 The cost is the loss of “nativeness” and accessibility issues

If you are looking for a specific widget…

 Do not reinvent the wheel:

• Check the wxPython demo

• Look inside wx.lib (160 custom widgets available)

 When everything else fails:

• Check if wxWidgets contains a generic implementation of your control

• Write your own

Owner-Drawn Controls – AGW

Advanced Generic Widgets

 A package officially distributed with wxPython (in wx.lib.agw)

 Contains 37 owner-drawn widgets and many useful auxiliary classes

 150 kLOC, fully documented in Sphinx-friendly style

 Extensive demos showing all the widgets’ functionalities

• Most of the widgets derived from C++

wxWidgets generic implementations

• Everything is pure-Python – no wrappers

• Code maintenance is straightforward

• Every wxPython user can easily write a

patch for any AGW widget

Owner-Drawn Controls – AGW

CustomTreeCtrl

Derived from wxWidgets

• Checkbox and radiobutton type tree items

• Hyperlink type tree items

• Multiline text items

• Separator-style items

• Enabling/disabling tree items

• Any widget can be attached next to an item

• Custom item selection styles (gradients)

• Multiple images for tree items

• Ellipsization and tooltips on long items

wx.TreeCtrl CustomTreeCtrl

wxPython sample: customtreectrl.py

Owner-Drawn Controls – AGW

FlatMenu

Derived from wxWidgets

wx.Menu FlatMenu

wxPython sample: flatmenu.py

Custom color schemes Multiple columns menus

Context menus for menu items Menu transparency

File history support Menu background image

Integrated toolbar & mini-bar Drop-down customization arrow

Owner-Drawn Controls – AGW

UltimateListCtrl

Derived from wxWidgets

wx.ListCtrl UltimateListCtrl

wxPython sample: ultimatelistctrl.py

Multiple images for items Flexible item formatting

Checkbox and radiobutton items Overflowing items

Multiline text items and hyperlinks Custom renderers

Enabling/disabling items Variable row heights

Any widget can be attached to an item Hide/show columns

Owner-Drawn Controls – AGW

RibbonBar

Derived from wxWidgets

wxPython sample: ribbonbar.py

• Similar to MS Office Ribbon

• Ribbon items expand/collapse

depending on the window size

• Custom color schemes

• Toolbars, tabbed panels and galleries

• More than 100 color settings

• Buttons with toggle behavior and

popup menus

Owner-Drawn Controls – AGW

ThumbnailCtrl

“Create your own…”

wxPython sample: thumbnailctrl.py

• Creates multiple image thumbnails from a folder

• Works with PIL or with the standard wxPython

image processing classes (customizable)

• Drag and drop of thumbnails to other applications

• Highlight thumbnails on mouse over

• Thumbnail rotation, zoom and font/color settings

• Lightning-fast as it uses multiple independent

threads to generate the thumbnails

• Multi-processing support will be added in the near

future (parallel thumbnail generation)

Owner-Drawn Controls – AGW

XLSGrid

“Create your own…”

wxPython sample: xlsgrid.py

• Any cell background and fill pattern

• All border types and colors exposed by Excel

• Any cell font, text color and rotation

• Alignment (LTR and RTL), shrink-to-fit and

wrapping

• Rich text and hyperlinks support

• Comments on cells

• Merging of cells and overflowing

• Column and row sizes respected

• Uses xlrd and, if available, Mark Hammond’s

pywin32 packages

Owner-Drawn Controls – AGW “Create your own…”

XLSGrid
MS Excel

Lessons Learned

Generic (personal) advices:

 Use the Widget Inspection Tool (WIT) to debug a GUI layout

• Displays widgets/sizers hierarchy

• Shows controls attributes (size,

position, colors, etc…)

• Sizers/widgets can be highlighted

• Watch events stream

• Can be used to easily spot a

wrong parent/child relationship

• Powerful resource to inspect any

widget internal structure

Lessons Learned

 Don’t try and guess event names and window styles

• Peruse the documentation and the wxPython demo

• Use the magical EventsInStyle

• Displays window styles and extra

styles for all widgets

• Shows appropriate events

depending on the widget

• Always uses the latest docs

available (from the web)

 Bind an event to the widget that generates the event

• i.e., use self.button.Bind() instead of self.Bind()

• http://wiki.wxpython.org/self.Bind%20vs.%20self.button.Bind

http://wiki.wxpython.org/self.Bind vs. self.button.Bind

Lessons Learned

 It’s insanely easy to port a wxWidgets C++ generic widget to wxPython

• If a C++ version exists, convert it to Python instead of reinventing the wheel

• http://wiki.wxpython.org/Porting%20Widgets%20From%20C%2B%2B

 When writing owner-drawn controls

• Use automatic double-buffering: all platforms support it, via wx.AutoBufferedPaintDC

• Always try to guess (or calculate) a reasonable default size for your widget

• http://wiki.wxpython.org/CreatingCustomControls

 When reporting a problem/issue/bug on the wxPython mailing list

• Mention platform, Python and wxPython versions

• Include a small, runnable sample app that demonstrate the problem

• Be sure you have run the Widget Inspection Tool (WIT)

http://wiki.wxpython.org/Porting Widgets From C++
http://wiki.wxpython.org/CreatingCustomControls

wxPython and Python 3

General considerations:

 Serious efforts to make wxPython compatible with Python 3 started in 2012

 Community was until recently disinterested in Python 3 support

 Major hassle to support Python 2 and Python 3

 Don’t insist on backward compatibility

 Move from Doxygen/Epydoc to Sphinx for the documentation

 Wrappers for wxWidgets C++ classes are generated with SIP instead of SWIG

 Python 2.7 and Python 3.2+ supported (no older releases)

 Better/more stable handling of the GIL

The project is referred to as Phoenix, to distinguish it from wxPython Classic

wxPython and Python 3 – Implementation

wxWidgets

Phoenix wrappers (SIP)

Sphinx documentation generators

wxPython and Python 3 – wx.lib

Support for Python 2 and 3…

1. text = wx.TextCtrl(parent, value=u'Hello')  Syntax error in Python 3.2

There are literally thousands of these u'something' in wx.lib…

2. cPickle vs. pickle, cStringIO vs. StringIO (and BytesIO), byte and text literals

3. print vs. print() – why oh why…

4. Removal of cmp= as keyword for sort

5. Many others…

We created a bridge tool (wx2to3.py) similar to the six package

wxPython and Python 3 – Backward Incompatibilities

1. Overloaded methods:

2. wx.PyDeadObjectError  RuntimeError

3. wx.PyAssertionError  wx.wxAssertionError

4. Reorganization of the wx namespace and sub-modules

5. 2-phase creation has changed:

Classic

SetDimensions (x, y, width, height, sizeFlags=wx.SIZE_AUTO)

SetRect (rect)

SetSize (size)

SetSizeWH (width, height)

SetSize (*args, **kwds)

Phoenix

wx.Window example

Classic
Phoenix

wxPython and Python 3 – Current Status

 Wrapped core classes (≈100 widgets) work with Python 2 and Python 3

• http://wxpython.org/Phoenix/ItsAlive/

 Pure-Python controls:

• Few modules in wx.lib have been ported

• Almost all AGW widgets are Python 3-ready

• Two different SVN repositories (Classic and Phoenix) for these widgets

 Phoenix can already be used in production mode if you only need core controls

 Daily preview snapshot builds are available:

• http://wxpython.org/Phoenix/snapshot-builds/

 Buildbot builds and results display for all platforms:

• http://buildbot.wxpython.org:8010/

http://wxpython.org/Phoenix/ItsAlive/
http://wxpython.org/Phoenix/snapshot-builds/
http://wxpython.org/Phoenix/snapshot-builds/
http://wxpython.org/Phoenix/snapshot-builds/
http://buildbot.wxpython.org:8010/

wxPython and Python 3 – Current Status

 Docstrings are extracted from wxWidgets C++ docs, tweaked and adapted to

Phoenix Python syntax

 Sphinx is then used on these modified docstrings:

 Lots of inline samples/code snippets in the documentation (we need more)

 Documentation builds are automated via buildbot

Please consider contributing to the documentation effort!

wxPython and Python 3 – Roadmap

 Current roadmap considers Phoenix to be complete by Q1/Q2 2013

• But this is just a guesstimate

 For existing applications, transition from Classic to Phoenix may take some effort

• Mostly due to backward-incompatible changes between Phoenix and Classic

• But I ported most of AGW to Phoenix in about 6 hours

 Once Phoenix is up and running, Classic will be discontinued

 Testers are more than welcome 

• Batter the wrapped core classes for robustness

• Abuse the wx.lib and AGW widgets to uncover incompatible leftovers

wxPython sample: python3.py

Conclusions

A few useful links

 Download wxPython: http://wxpython.org/download.php

 wxPython Wiki: http://wiki.wxpython.org/

 AGW main page: http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html

 Phoenix Project: http://wiki.wxpython.org/ProjectPhoenix

 Phoenix docs:

• http://wxpython.org/Phoenix/docs/html/main.html

• http://wxpython.org/Phoenix/docs/html/DocstringsGuidelines.html

 Presentation samples: http://www.infinity77.net/pycon/wxPython.zip

http://wxpython.org/download.php
http://wxpython.org/download.php
http://wiki.wxpython.org/
http://wiki.wxpython.org/
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
http://xoomer.virgilio.it/infinity77/AGW_Docs/index.html
http://wiki.wxpython.org/ProjectPhoenix
http://wiki.wxpython.org/ProjectPhoenix
http://wxpython.org/Phoenix/docs/html/main.html
http://wxpython.org/Phoenix/docs/html/main.html
http://wxpython.org/Phoenix/docs/html/main.html
http://wxpython.org/Phoenix/docs/html/DocstringsGuidelines.html
http://wxpython.org/Phoenix/docs/html/DocstringsGuidelines.html
http://www.infinity77.net/pycon/wxPython.zip

Thank You

Questions?

Comments?

