
άƛƳǇƻǊǘ wxέ: a Tale of Never-ending GUI Power

PyAr ς November 16, 2012

Andrea Gavana
Maersk Oil

andrea.gavana@gmail.com
andrea.gavana@maerskoil.com

mailto:andrea.gavana@gmail.com
mailto:andrea.gavana@maerskoil.com

Outline

V Introduction

V wxPython architecture and package structures

V How-Tos:

Å Windows layout management

Å wxPython with threads and multiprocessing

Å Persisting GUI states

V AGW library and owner-drawn controls

V Lessons learned

V wxPython with Python 3

Presentation samples: http://www.infinity77.net/pycon/wxPython.zip

http://www.infinity77.net/pycon/wxPython.zip

Introduction

V wxPython is a GUI toolkit for Python, built on the wxWidgets C++ framework

V Designed to be cross-platform, supports Windows, Linux, Unix and Mac

V Uses native widgets wherever possible

V Extensive library of examples, wonderful community

V wxWidgets (1992) and wxPython (1996) are mature and robust projects

V The next generation of wxPython (Phoenix) is almost a reality

Phoenix

Why wxPython?

V Native look and feel on all platforms

V Vast number of widgets (native and owner-drawn)

V Permissive license

V Fast evolving pace and excellent maintenance

V άThe only reason wxPython isn't the standard Python GUI toolkit is that TkInter

was there first.έ όDǳƛŘƻ Ǿŀƴ Rossum) J

Choice is hard for newcomers:

V High quality alternatives (PyQt, PySide, PyGtk, TkInter)

V Try them all, choose The One

Architecture

Operating System

wxWidgets

 Platform GUI

wxPython Extension Modules

wxPython Library

Proxy classes

Architecture

Core Classes

BitmapButton
Χ

ListCtrl
Χ

Window

100 Widgets
Ғ пс ƪ[h/

Wrapped Sub-Modules

animate dataview Χ propgrid

AnimationCtrl DataViewCtrl
DataViewTreeCtrl
DataViewListCtrl

Χ

PropertyGrid
PropertyGridManager

Χ

18 Modules, 50 Widgets
Ғ он ƪ[h/

wx.lib

agw

floatcanvas

Χ

pubsub

AdvancedSplash
Χ

ZoomBar
Χ

FloatCanvas
Χ

NavCanvas

Publisher ActiveXCtrl
Χ

FlashWindow
Χ

Ticker

323 Modules
Ғ мсл ²ƛŘƎŜǘǎ
Ғ ннр ƪ[h/

Architecture

Top-level (floating)
windows

Partial class structure

Windows Layout Management

Layout management: describes how widgets are laid out in an application's user

interface

V wxPython provides a few alternatives:

ÅAbsolute positioning (brute force)Υ ŘƻƴΩǘΦ bƻΣ ǊŜŀƭƭȅΣ ŘƻƴΩǘ

ÅSizers: very powerful, not so simple at the beginning, but worth the effort

ÅSizedControls: add-on library to help simplify the creation of sizer-based layouts

ÅAUI (Advanced User Interface): docking windows and automatic layout management

V My recommendation is to use sizers and AUI, depending on the layout you wish

to build:

ÅUse sizers for sub-windows layout or complex/nested layouts

ÅTry AUI for the main application windows

Windows Layout Management ς Sizers

V Similar to LayoutManagers in Java

V All items (widgets or nested sizers) added to a sizer are laid out by a specific

algorithm

V Relationships defined by containment within sizers or nested sizers

V !ƴ ƛǘŜƳΩǎ Ǉƻǎƛǘƛƻƴ ǿƛǘƘƛƴ ƛǘǎ ŀƭƭƻǘǘŜŘ ǎǇŀŎŜ ƛǎ ŀƭǎƻ ŎƻƴǘǊƻƭƭŀōƭŜΥ

ÅEmpty space on borders

ÅAlignment

V You need to be able to think visually both top-down and bottom-up to capture

your design

Windows Layout Management ς Sizers

wxPython sample: sizers.py

Windows Layout Management ς AUI

AUI is an advanced layout mechanism you can use to quickly build high-quality,

cross platform user interfaces. AUI provides:

V Native, dockable floating frames

V Perspective saving and loading

V Native toolbars incorporating real-time, "spring-loaded" dragging

V Customizable floating/docking behaviour

V Completely customizable look-and-feel

V Optional transparent window effects (while dragging or docking)

V Splittable notebook control

Available as a wrapped sub-module (in wx.aui) or as pure-Python implementation

(in wx.lib.agw.aui)

Windows Layout Management ς AUI

wxPython sample: aui.py

Windows Layout Management ς AUI

V In addition to layout management, you get fancy docking/floating windows

V ¢Ǌǳǎǘ ƳŜ ǿƘŜƴ L ǎŀȅ ȅƻǳ Ŏŀƴ ƎŜǘ ǉǳƛǘŜ ƛƳǇǊŜǎǎƛǾŜ ƭŀȅƻǳǘǎΧ

Windows Layout Management ς AUI

Parallel wxPython

tƭŀȅƛƴƎ ƴƛŎŜ ǿƛǘƘ ǘƘǊŜŀŘǎ ƻǊ ǇŀǊŀƭƭŜƭ ǇǊƻŎŜǎǎŜǎΧ

V wxPython widgets are not (easily) pickleable:

Åmultiprocessing will complain

ÅChild processes can not directly interact with the main process

V GUI-related methods/functions are not thread-safe:

ÅSeparate threads can not directly call GUI methods

ÅThe GIL is usually not your friend J

Different alternatives for handling threads:

Åwx.CallAfter

Åwx.PostEvent

ÅUsing pubsub

Parallel wxPython ς Threads

V GUI remains responsive

V Similar strategy can be

implemented via

wx.PostEvent or pubsub

wxPython samples:

threads_1.py

threads_2.py

Parallel wxPython ς Processes

Multiple concurrent processes:

ÅStart a separate monitoring thread

ÅStart the processes from the thread

ÅUse wx.CallAfter, wx.PostEvent or pubsub in the thread to communicate with your GUI

V GUI remains responsive

V You can use

multiprocessing.apply_async

as well

wxPython sample:

process_1.py

Parallel wxPython ς Processes

Single separate process:

ÅUsed to monitor an external applications (for example)

ÅParticularly useful to monitor stdout and stderr

ÅUse wx.Process and wx.Execute to run the separate process

V GUI remains responsive

V cmd can be any process

you can start on your

machine

wxPython sample:

process_2.py

Persisting GUIs State

Persistent GUIs automatically save their state when they are destroyed and restore

it when they are recreated, even during another program invocation.

wx.lib.agw.persist is a package that does all the work for you:

V PersistenceManager which all persistent widgets register themselves with

V PersistentObject is the base class for all persistent controls

V PersistentHandlers which handle different kind of saving/restoring actions depending on

the widget type

Persistent states include:

VWindows position, size and (AUI) layouts

V Text control values
V Radiobutton selections
V Tree controls expansion state
V[ƛǎǘ ŎƻƴǘǊƻƭǎ ǎŜƭŜŎǘƛƻƴǎΣ ŎƻƭǳƳƴ ǿƛŘǘƘǎ ŜǘŎΧ

The persist framework handles more than 100 different widgets

